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e Kramer / Zeitnitz / Boge

e DNNs exploit features (employ strategies) that are
misleading (misguided) for the actual task at hand

e can be very successful on training / testing cases
e “well-generalizing features in the data” (llyas et al., 2019)

e non-robust, i.e., “brittle to small adversarial perturbations”
(ibid.)
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natural vs. ‘non-natural’ adversarials
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anomalies in jet images ~ natural adversarials
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Anomalies...

.. are phenomena (e.g., 1/8000 x-particles scattered back
from foil)

. have the power to bring about radical change (Kuhn,
Lakatos, Laudan)

.. drive scientific progress (truth / understanding / problem
solving)



Model-Independent Searches
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surprisingly, the autoencoder performance is remarkably
stable against signal contamination; the performance is barely
degraded even if signal is 10% of the training sample.



Clever Hans project

we train the AE on a pure sample of top jets and call it an
inverse tagger. While the former setup is designed to perform
the well-known task of tagging top jets as anomalies, the latter
setup is designed to perform the inverse task, i.e. tagging
QCD jets as anomalies in a background sample of top jets.
[...] [T]he inverse tagger performs worse than randomly
tagging jets as anomalous. [...] explain the [...] failure of the
inverse tagger by the interplay between an insufficient AE
performance and the different complexity in the images of the
two jet classes.
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Abstract

From a certain vantage point, a deep neural networks (DNNs) are nothing but parametrized
functions fy(x) of some data vector x, and their ‘learning’ is nothing but an iterative, algo-
rithmic fitting of the parameters to data, with a precaution against over-fitting for the sake of
‘generality. Hence, what could be special about DNNS as a scientific tool or model? Following
a number of recent approaches, T here argue that DNNs are capable of developing what T call
Junctional concept-proxies (FCPs), and that this makes them interestingly different from tra-
ditional multivariate methods in statistics. 1 will illustrate the salient difference by considering
the possibility of what I call ‘Actually Smart Hans predictors’,i.¢., DNNs that robustly succeed
because they learn to trigger on features connected to the data that are not transparent to human
researchers.
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x is a functional proxy for y iff x fulfils all the same causal
roles as y, but is otherwise distinguished from y in further
defining properties.
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x is a functional proxy for y iff x fulfils all the same causal
roles as y, but is otherwise distinguished from y in further
defining properties.

Given a set of contexts, C. Then x is a functional proxy for y,
relative to C, iff x fulfils all the same causal roles as y in any
c € C, but is otherwise distinguished from y in further defining
properties.
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Given a set of tasks, T. Then x is a functional concept proxy
(FCP), relative to T, iff x fulfils all the same causal roles as
does any intrasubjectively stable contentful state, y, that is the
basis of a higher congitive process of human reasoning
tackling the t € T, but is otherwise distinguished from y in
further defining properties, including that x is not connected to
conscious mental representations whereas y is.
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DNNs may develop FCPs based on features that are (a)
non-obvious or even “humanly inscrutable”; (b)
well-generalising across data sets, and (c) highly fruitful for
scientific prediction and discovery. Human researchers may
thus fall behind qua being left without the right concepts to (i)
comprehend the reasons for the given DNNs success and to
(i) develop theoretical models of their own to advance science
in the ways we’re used to.
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Models: Measuring or Cognitive Instruments?

‘Why Trust a Simulation?
Models, Parameters, and Robustness

in Simulation-Infected Experiments

Fl

1. Boge

Abstract

Computer simulations are mowadays ofien direetly involved in the generation of experi-
‘mental resulis. Given this dependency of experiments on computer simulations, that of
simulations on models, and that of the models on free parameters, how o rescarchers
establish rust in their experimental results? Usin
study, T wil identify dhree different types of robustness that I call conceptual, methodolo-
gical, and parametsic robustness, and show how they can sanction this trust, However, as
willalso show, simulation models in HEP themselves fil to exhibit a type of robustness |
call inverse parametric robustness. This combination of robustness and failures thereof is
best understood by distinguishing different cpistemic capacities of simulations and differ-

physics (HEP) as a case

ent senses of rust failitate
Resulls can mean accepting them as means for gencrating belief in these results, while this
neednot i i i i

realiy
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[Certain models] [n]ot only [...] allow us to interpret so-called
measurement outputs, but [...] the models themselves can
function as measuring instruments [...].
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[Certain models] [n]ot only [...] allow us to interpret so-called
measurement outputs, but [...] the models themselves can
function as measuring instruments [...].

[simulations] can be embedded in measurement practices in
such a way that simulation results constitute measurement
outcomes

15



Models: Measuring or Cognitive Instruments?

e three different arguments (one strawman)

16



Models: Measuring or Cognitive Instruments?

e three different arguments (one strawman)

e critique of the premises

16



Models: Measuring or Cognitive Instruments?

e three different arguments (one strawman)
e critique of the premises
e what does it take to be a ‘cognitive’ instrument?

16



Models: Measuring or Cognitive Instruments?

three different arguments (one strawman)

critique of the premises

what does it take to be a ‘cognitive’ instrument?

causal contact (literal instrument) vs. inferential connection
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Models: Measuring or Cognitive Instruments?

thus calling models ‘cognitive’ also means that they are
capable of promoting understanding—understanding of a
variety that, though not objective in the sense of involving the
truth of the relevant model, does imply advanced control over
the phenomena. This control can manifest in various ways,
including and especially in the ability to use these models as
templates for further, even more sophisticated ones that
accommodate more empirical data, as evidenced by the
converged hadronization models in HEP.
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