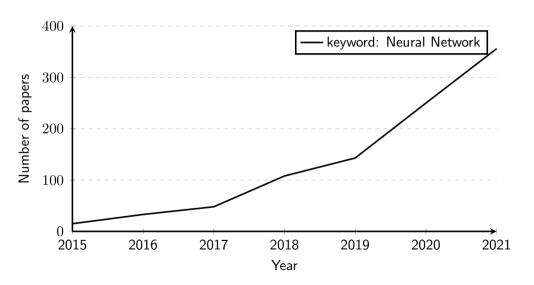
Martin's Phase 2 Contributions and B2 Workshop February 25, 2022

Faits Accomplis

Papers

- 1 (2020) Explanations and Candidate Explanations
 - published in EJPS
- 2 (2021) Conjectures and Disconfirmations
 - published open access in *Erkenntnis*
- **3** (2022) Bottoms Up
 - □ published open access in *Studies*


Conferences

- 1 Symposium Triple Crown (BSPS, EPSA, PSA)
- Poundations of Physics

Papers

- Doing More with Less: DM and MG with N. Martens (abstract accepted for chapter of Synthese Library edited volume *Philosophy of Astrophysics*)
 - □ looks at the debate through the lens of explanatory ideals (viz. simplicity and unification)
- 2 Abstraction, Explanation, and Effective Field Theories (?)
 - ☐ argues that EFTs are abstract models that can be explanatory when a full model is known
- 3 Realism and the Search for New Physics (*EJPS* conference edition submitting this week)
 - □ argues that the turn to model independence is a necessary detour, but one still wants to confirm models of realistic new physics

Future Research: Deep Learning in Particle Physics

1. The Rise of Model Independence

Guiding Questions

- □ what is model independence in particle physics and in general? What does it consist in and can a coherent definition be applied?
- □ what are the motivations for model independent strategies, and what are the prospects and drawbacks of such an approach?
- □ is there a reason to worry if this is not a transient mode of research?

Working Hypothesis

- □ MI strategies are those that aim to strongly minimise model bias
- □ three main strategies in HEP
 - 1 SM precision measurements
 - 2 framework for parametrising deviations (SMEFT)
 - 3 Deep Learning

2. Guiding Principles and Model Virtues

Guiding Questions

- □ how are *model virtues* distinct from theoretical virtues?
- □ how are the modelling virtues changing and in virtue of what?
- □ how are attitudes towards principles in physics changing, in particular, the principle of naturalness?
- □ what will guide model-building going forward?

Working Hypothesis

- □ theoretical virtues are about acceptance/truth, but the virtues of a good model are more i) about pursuitworthiness, ii) more local, iii) non-epistemic
- □ principles (e.g. naturalness) are more like guides and attitudes towards them change over time (pursuitworthyworthy)

3. Explanation and Deep Learning in Physics

Guiding Questions

- □ in what sense are Deep Neural Nets black boxes?
- □ can black boxes explain?
- □ can we explain the success of DNNs and how can DNNs explain?
- □ do the features of the set of training data function similarly to modelling assumptions?

Working Hypothesis

□ the blackboxing in DL algorithms does not preclude, but severely restricts the range of answers to explanation seeking questions

4. Deep Learning—a New Empiricism

Guiding Questions

- □ what is the role of theory/model in DL searches for new physics?
- □ can DL searches be thought of as employing an inductivist methodology?
- □ is this strict inductivism possible, and what are its advantages and disadvantages?

Working Hypothesis

- ☐ it is a close as we can get to pure empiricism, but
- □ researchers are turning to more inductivist methods primarily because they have few other options, not because they think these are more likely to be successful

5. Deep (Learning) in the Data Pipeline

Guiding Questions

- □ how does data travel through DNNs in particle physics?
- □ how does this relate to other pictures of *data journeys* and other characterisations of particle physics measurements?
- what is the role of representation in this process and how does this affect our ability to understand?

Issues

- □ opens innovative approaches to data representation (image recognition)
- □ analyses closer to data (rather than on particle four-momenta MEM) reduces reliance on models
- ☐ issues of training on real data—no true labelling

Beyond Models

what is 'model independence'? How independent from models can one be? □ how does one historically, or philosophically, characterise the methodological shift that is happening? □ have there been other time periods during which physicists pursued model independence? what relation does this bear to today? □ why pursue model independence? what are its benefits and limitations? in what various ways are physicists reducing dependence on models, modelling biases, and modelling assumptions? □ how do deep learning and AI searches fit with model independent strategies? etc.

Beyond Models

- □ June 14-15 in Bonn
- □ Senatasaal
- □ Hybrid
- □ 1-2 slots for short contributed virtual 'poster session' (10min)

Speakers

- Michelangelo Mangano
- □ Chistophe Grojean
- □ Kyle Cranmer
- □ Philip Bechtle
- Michela Massimi
- □ Emily Sullivan
- □ Adam Koberinski
- □ Richard Dawid