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Anomaly detection

Lots of interest recently in anomaly detection — fueled by machine learning

The LHC Olympics 2020

A Community Challenge for Anomaly
Detection in High Energy Physics
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3 Unsupervised

3.1 Anomalous Jet Identification via Variational Recurrent Neural Network

3.2 Anomaly Detection with Density Estimation

3.3 BuHuLaSpa: Bump Hunting in Latent Space

3.4 GAN-AE and BumpHunter

3.5 Gaussianizing Iterative Slicing (GIS): Unsupervised In-distribution Anomaly
Detection through Conditional Density Estimation

3.6 Latent Dirichlet Allocation

3.7 Particle Graph Autoencoders

3.8 Regularized Likelihoods

3.9 UCluster: Unsupervised Clustering

Weakly Supervised

4.1 CWoLa Hunting

4.2 CWoLa and Autoencoders: Comparing Weak- and Unsupervised methods
for Resonant Anomaly Detection

4.3 Tag N’ Train

4.4 Simulation Assisted Likelihood-free Anomaly Detection

4.5 Simulation-Assisted Decorrelation for Resonant Anomaly Detection
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5.1 Deep Ensemble Anomaly Detection
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5.3 QUAK: Quasi-Anomalous Knowledge for Anomaly Detection
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A spectrum

ML-based

Anomaly detection

General Search Standard Model

: o :
s this the goal* / MUSIC Bump Hunts EFT Higgs
Model Model

Independent Dependent

s a fully model-independent approach our goal?
e \What does that mean?

e |sitthe right goal? Is it a reasonable goal?



The poster-child for model-dependent searches

CMS \s=7TeV,L=51fb":\s=8TeV,L=19.7 fb
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Modeling particle physics processes

| atent variables

Detector Shower Parton-level Theory
Interactions splittings momenta parameters
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Modeling particle physics processes

Detector Shower Parton-level Theory

Observables . . L
Interactions splittings momenta parameters
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Modeling particle physics processes

Detector Shower Parton-level Theory

Observables . . L
interactions splittings momenta parameters

L
pald) = [dza [dz, [dz, plolzo p(zalzs) plza) ) p(20)



A spectrum

General Search Standard Model

: o :
s this the goal* / MUSIC Bump Hunts EFT Higgs
Model Model

Independent Dependent

Even our most model-dependent searches have different degrees

e |tis easy to take for granted, but let us be pedantic



Beyond the standard model

The Standard Model really only had one free parameter (mp)

 Once my is specitied, so are the cross-section, branching

ratio, and efficiencies

| o BR |
o Signal strength u = Py and u = 1 is the SM

Osm ° sm

So what is the model that corresponds to u # 17
e |tis a well-defined statistical model
e Just scale signal template proportionally

e Butitisn't a model detined by quantum field theory

* (Yes, there are some EFTs that map to it)
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Beyond the standard model

Here we even consider u < 0, which would correspond
to a negative number of signal events.

e That doesn’t make sense physically

e The statistical model is well defined as long as the
total number of events is positive

 |tindicates a deficit of events

* |n other cases, destructive qguantum mechanical
interference might lead to such a deficit of events

0.5 —
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Beyond the standard model

Many production and decay modes

e Can consider deviations from the SM

e Not a valid QFT, but it was practical
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Background only?

Also, what is the “background-only”

CMS \s=7TeV,L=5.1fb':\s=8TeV,L=19.7 fb™

hypothesis here?
yP ?‘6 35
e The Higgs is needed for the SM ™ 30
to work P
c 25
e “SM background-only” without 2
. . . LLI 20
the Higgs isn't meaningful
, : 1
e \We don’t have an unique, >
operationally defined, consistent 10 __
QFT to serve as the "null .
s . il
hypothesis i AL R
In practice, ”ignore” Higgs 80 100 200 300 400 600 800
m,, (GeV)

component of the SM prediction



What if there was no Higgs boson?

In the run up to the SSC and LHC, arguments based on “No-Lose Theorem”

e Either we will see a light Higgs in high energy collisions, or

e We will see strong WW, W/Z, ZZ scattering

Generic prediction, but details depend on specific theory

ABSTRACT What if there is no Higgs boson?
May 1985 LBL-19470 . . . Higgs or Not - ATLAS will solve the mystery of mass
UCB-PTH-85/19 There are two possibilities for electroweak symmetry breaking: ei- 30 November 2011 | By Michael Chanowitz

ther there is a scalar particle much lighter than 1 TeV or the longitudi-

nal components of W and Z bosons interact strongly at center of mass

THE TeV PHYSICS OF STRONGLY INTERACTING energies of order 1 TeV or more. We study the general signatures of
W’s AND Z’s * a strongly interacting W, Z system and conclude that these two possi-

bilities can be unambiguously distinguished by a hadron collider facility
capable of observing the enhanced production of WW,W Z and Z Z pairs
that will occur if W’s and Z’s have strong interactions. Detection of the
enhanced signal over background requires hadron collisions at a center

Michael S. Chanowitz _ .
of mass energy of order 4/s = 40 TeV and an integrated luminosity of

Lawrence Berkeley Laboratory order 10*%m~3. With these parameters we predict 3800 to 6000 gauge
University of California ' boson pairs satisfying cuts for which only 2600 pairs would be produced
Berkeley, California 94720 in the absence of strong interactions.

As our results draw on the global chiral SU(2) symmetry of the
Mary K. Gaillard scalar sector of the standard SU(2) x U(1) model, we give an extended
proof, to all orders in the generalized renormalizable gauge, that high

Lawrence Berkeley Laboratory energy amplitudes of longitudinal W’s and Z’s are well approximated

and Michael Chanowitz is a theoretical physicist at Lawrence Berkeley National Laboratory. He is the author with Mary

. by amp litudes of the corresponding unphysica.l scalars. The results are K. Gaillard of the heavily cited 1985 paper entitled: "The TeV Physics of Strongly Interacting W's and Z's." While
Depar tment of PhYSlCS . . . R ATLAS and CMS are narrowing the allowed mass regions where a Higgs boson may be found, Chanowitz
appllcable to the broad class of strong 1nteraction models that admit a addresses what would be the impact of not finding the Higgs. (Image: ATLAS Experiment)

University of California
Berkeley, California 94720

global chiral SU(2) symmetry. L — —
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What is the background-only model here?

: > 2407 7 7 T 7 T T T 1 T T T T T T T T

n the case of Higgs to two photons, the R = Selected diphoton sample =
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The null hypothesis is a 4th order polynomial! = okt H I\ BT
e This choice was informed / validated with 100 10 120 130 140 150 160

. o GeV

simulated data, but we should recognize it My FoeY]

for what it is



Takeaway

The main point of the slides above is that:

o Statistical model used tor hypothesis test was always well defined, but

e the connection of that statistical model to quantum field theory varies
* Many reasonable assumptions that we have become used to as a field
* Easy to take for granted and be blind to them

* Or we can use these as baby-steps for a more “model independent” strategy
by loosening the connection to QFT while maintaining some intuitive notions

for what we mean by background and signal (or null / alternate hypothesis)

14



Searching without an alternate
(aka Goodness of fit / Out ot Distribution Detection / Anomaly Detection)

isn't a well defined goal
(It is underspecitied)



Anomaly detection

Lots of interest recently in anomaly detection — fueled by machine learning

e Formally the same as Goodness-of-Fit or Out-of-Distribution detection

The LHC Olympics 2020

A Community Challenge for Anomaly
Detection in High Energy Physics
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3.4 GAN-AE and BumpHunter
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Goodness-of-fit

Intuitively: does the null hypothesis H, tit the data?

e Pick some “test statistic” T (e.g. chi-square) and can compute the p-value

e |t the p-value is small, reject the null

f(T1H,)
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Goodness-of-fit

Supplemental Studies for Simultaneous Goodness-of-F'it
Testing

Pro b I em: Th ere IS NO Uun | q ye Ch O | ce 'I:O r Dr. Woltgang Rolke, Dept. of Mathematical Sciences, University of Puerto Rico

December 7, 2020

the test statistic, giving rise to a large
number of goodness-of-fit tests Abstrac

Testing to see whether a given data set comes from some specified distribution is among

the oldest types of problems in Statistics. Many such tests have been developed and their

11 /7 performance studied. The general result has been that while a certain test might perform

® C a n a S |< a b O u t t h e p O\Ne r O-F a G O F well, aka have good power, in one situation it will fail badly in others. This is not a surprise
given the great many ways in which a distribution can differ from the one specified in the

. null hypothesis. It is therefore very difficult to decide a priori which test to use. The

teSt tO d ete Ct a 9 IVe r] a ‘te rn ate obvious solution is not to rely on any one test but to run several of them. This however
leads to the problem of simultaneous inference, that is, if several tests are done even if the

null hypothesis were true, one of them is likely to reject it anyway just by random chance.

In this paper we present a method that yields a p value that is uniform under the null

hypothesis no matter how many tests are run. This is achieved by adjusting the p value via

Actual condition simulation. We present a number of simulation studies that show the uniformity of the p

value and others that show that this test is superior to any one test if the power is averaged

Gullty Not gullty over a large number of cases.
. Keywords: Kolmogorov-Smirnov, Anderson-Darling, Shapiro-Wilk, Neyman Smooth test, Power,
False Positive Monte Carlo Simulation
Verdict of " l.e. guilt reported
culliy True Positive (le. g fair PO
u unrair
Type | error
Decision I ternat ~
1 nu alternate
False Negative TP FP

Verdict of (i.e. guilt
'not guilty' not detected)
Type Il error

True Negative FN | TN

actually guilty < new physics

( What is this axis? )

verdict quilty < claim discovery P



Goodness-of-fit

Supplemental Studies for Simultaneous Goodness-of-F'it
Testing

P ro b I em: Th ere IS NO Uun | q ye Ch O | ce 'I:O r Dr. Wolfgang Rolke, Dept. of Mathematical Sciences, University of Puerto Rico

December 7, 2020
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simulation. We present a number of simulation studies that show the uniformity of the p
Method value and others that show that this test is superior to any one test if the power is averaged
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The Neyman-Pearson Lemma

In 1928-1938 Neyman & Pearson developed a theory in which one
must consider competing Hypotheses:

- the Null Hypothesis H, (background only)
- the Alternate Hypothesis H; (signal-plus-background)

Given some probability that we wrongly reject the Null Hypothesis
o= P(x € W|H))

(Convention: if data falls in W then we accept Ho)

Find the region W such that we minimize the probability of wrongly
accepting the Hy (when Hj is true)

ﬂ:P(l'EW‘Hl)



The Neyman-Pearson Lemma

The region W that minimizes the probability of wrongly accepting Ho
IS just a contour of the Likelihood Ratio

Any other region of the same size will have less power

> ko

The likelihood ratio is an example of a Test Statistic, eg. a real-
valued function that summarizes the data in a way relevant to the
hypotheses that are being tested



The Neyman-Pearson Lemma

You can also read the Neyman-Pearson lemma backwards to reverse engineer an
alternate “Hq" for which a given GoF test statistic T(x) is powertul

p(x|Hp)

Do Ho LR(x) pix| "H,") « T(x) - p(x|H)



An impossibility result

However, for any GoF test statistic 7(x) there is also
an entire family of alternates where the distribution

of T(x) is the same as tor the null

* e.g.the GoF testis just doing random guessing

e See: https://arxiv.org/abs/210/.06908

Applies to “out-of-distribution detection” and
"anomaly detection” as well

2.1. OOD Detection as Goodness-of-fit Testing

Understanding Failures in Out-of-Distribution Detection with

. In its unconstrained form, OOD detection can be formalized
Deep Generative Models

as a single-sample hypothesis test (Nalisnick et al., 2019b;
Serra et al., 2020; Wang et al., 2020); given a sample x,

Lily H. Zhang' Mark Goldstein! Rajesh Ranganath ' the test decides whether to reject the null hypothesis that
a sample was drawn from the data distribution P, in favor
of an alternative hypothesis that the sample came from a
distribution other than P:

HOZXNP
HAXNQEQ7PQQ

https://arxiv.org/abs/2107.06908

2.2. OOD Detection as a Single-Sample Distributional
Test is Impossible

OO0D detection defined as a single-sample goodness-of-fit
test 1s a challenging classification task given that the out-
distributions are unknown. To remove the effect of misesti-
mation, we consider test statistics which can use knowledge
of the true in-distribution P via its density or probability
function, denoted ¢, : X — R. We now present an impos-
sibility result: no test can do well against all alternatives.

Proposition 1. Let P be the distribution under the null
hypothesis Hy. Let 1 be the measure associated with the
distribution of test statistic ¢,(x) under the null. Then,
assuming the conditional x | ¢, (x) is not degenerate on a
[i-non-measure zero set, there exists a set of alternative
distributions () € Q where () #4 P and the test has power
equal to the false positive rate. In other words, the test does
no better than random guessing.

Proof. See Appendix A. The proof sketch 1s as follows:
First we construct distributions () € O for which the distri-
bution of ¢, (x) is the same but the distribution of x|¢, (X)
differs when x ~ P and x ~ @ for all ¢,(x) in a non-
measure-zero set ®. This implies ¢(x) #4 p(x). We show
that the power of the test for any rejection rule for such
a pair P, () 1s equal to the false positive rate for all false
positive rates, which 1s equivalent to random guessing.



https://arxiv.org/abs/2107.06908

No Free Lunch
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No Free Lunch Theorem for Search & Optimization

A similar impossibility theorem exists in machine learning (formulated here as an

optimization problem or search)

e "any two optimization algorithms are equivalent when their performance is

averaged across all possible problems”.

e “We have dubbed the associated results NFL
theorems because they demonstrate that
it an algorithm performs well on a certain class
ot problems then it necessarily pays for that with
degraded performance on the set of all
remaining problems.”

Wolpert and Macready, "No Free Lunch Theorems for Search”

The Lack of A Priori Distinctions Between Learning
Algorithms

David H. Wolpert
The Santa Fe Institute, 1399 Hyde Park Rd.,
Santa Fe, NM, 87501, USA

This is the first of two papers that use off-training set (OTS) error
to investigate the assumption-free relationship between learning algo-
rithms. This first paper discusses the senses in which there are no
a priori distinctions between learning algorithms. (The second paper
discusses the senses in which there are such distinctions.) In this first
paper it is shown, loosely speaking, that for any two algorithms A
and B, there are “as many” targets (or priors over targets) for which A
has lower expected OTS error than B as vice versa, for loss functions
like zero-one loss. In particular, this is true if A is cross-validation
and B is “anti-cross-validation” (choose the learning algorithm with
largest cross-validation error). This paper ends with a discussion of
the implications of these results for computational learning theory. It
is shown that one cannot say: if empirical misclassification rate is low,
the Vapnik-Chervonenkis dimension of your generalizer is small, and
the training set is large, then with high probability your OTS error is
small. Other implications for “membership queries” algorithms and
“punting” algorithms are also discussed.

“Even after the observation of the frequent conjunction of ob-
jects, we have no reason to draw any inference concerning
any object beyond those of which we have had experience.”
David Hume, in A Treatise of Human Nature, Book 1, part 3,
Section 12.


https://www.semanticscholar.org/paper/No-Free-Lunch-Theorems-for-Search-Wolpert-Macready/93a7f5b7f51622430a4a4d4002152b277e4be470?p2df

Real world data has structure

But real world data has structure inherited from the causal mechanism that generated it

e |t we bias our models away from irrelevant, unphysical possibilities we can do better

Random image Natural image
(no structure) (rich structure)
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Inductive Bias

A major tool of deep learning: convolutional neural networks

e the world is compositional = hierarchical architecture

* images are translationally invariant = convolutions

Input Image

Sliding window

* B
light and dark

X
BN
e o o ... X

complex shapes shapes that can be
used to define a flower .

\..°E _/ \ '... -_/ \’ o. / o. _/
Every feature map output is the - -

result of applying a filter to the image
The new feature map is the next input

Filters

Activations of the network at a particular layer

image credit: MathWorks
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FC
Fully Connected

layers to support
classification
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RelLU
rectified linear units

Probability
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https://www.mathworks.com/help/nnet/convolutional-neural-networks.html

Insight of data generating process informs
inductive bias on architecture

(a) Molecule (b) Mass-Spring System

O ANEV_Erava

(C) n-body System (d) Rigid Body System

(e) Sentence and Parse Tree (f) Image and Fully-Connected Scene Graph
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Inductive Bias

Compositionality

Relationships

Symmetry
Causality
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s bias bad?



The term “bias”

The term “bias” is highly overloaded and used in many ways

e Generally, "bias” carries a negative connotation or is pejorative

e "To be biased” is considered bad

In the context of model-independent searches, we often hear “bias” being useao

informally, e.qg.
 “We chose a model-independent approach to avoid theory bias”

e "To remove theory bias and model-dependence in ...’

But what does this mean more formally? ... and is it bad?
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Estimators & Bias

Given some statistical model p(x|a) and a set of observations {x;} often one wants
to estimate the true value of a (assuming the model is true).

An estimator is function of the data written é&(z1,...z,)
e Since the data are random, so is the resulting estimate

* one can compute expectation of the estimator Ela(z)|a] = /&(m)f(:v\oz)d:v

Properties of estimators:

e bias FEla(r)|la] —a ("unbiased” means bias of estimator O for all true a)

® variance E[(&(w)—a)Q\a]=/(5z(w)—a)2f(w|a)dw



Bilas as a term

Relaxing the language a bit, one might think of “bias” as:
e \When average result from procedure doesn't recover the ground-truth target

* Preferring a priori one option to another without explicit evidence

In a Bayesian language, one would usually use Bayes theorem
* Posterior(theory | data) « Likelihood(data | theory) - Prior(theory)

* |In general, Bayesian approaches are “biased” towards the prior
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Cramér-Rao Bound

The minimum variance bound on an unbiased estimator is given by the Cramer-Rao bound:

COV[@‘@O]ZJ ~ I ((9())

/ \

Expected error Inverse of
of best-fit parameter Fisher information

Where [ is the Fisher information matrix

[0%logp(z|0)] =
IZJ[Q] = — I 0. 8?9‘ ) 0
i i OV i

Maximum Likelihood Estimators asymptotically reach this bound



James-Stein Estimator

Consider a standard multivariate Gaussian distribution for X in n dimensions

centered around 1
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James-Stein Estimator

Consider a standard multivariate Gaussian distribution for X in n dimensions

centered around o1
e 2 1 ’ % o
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James-Stein Estimator

Consider a standard multivariate Gaussian distribution for X in n dimensions

centered around pl
)2
exp< (xz Q'UZ) ) :

6 1

fﬁ:H

Goal: minimize mean-squared error \ />
E
MSE[i) = Ellfi - @) Wt s v
MLE (unbiased)

James-Stein (weird)
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James-Stein Estimator

The James-Stein estimator seems like a horrible suggestion

fys = |1 -2 5 ]
] ]2 ‘1

3

']

1

o clearly biased (MLE is not) 3

e shifts towards origin is not
translationally invariant

X = X = x+A




James-Stein Estimator

The James-Stein estimator seems like a horrible suggestion
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* clearly biased (MLE is not) o f—tmc AT
e shifts towards origin is not E \

translationally invariant
X = x = x+A
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| — MLE

Yet, it has smaller mean squared
error than MLE for n>2 |
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Mean Squared Error

e it “"dominates” the MLE
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Bias - Variance Tradeoff

Best understood in terms of Bias - Variance tradeoft

Most physicist are allergic to the idea ot a biased estimator
e try to find unbiased estimator with smallest variance

e hence importance of Cramér-Rao bound

But what if we just want to minimize the mean-squared error?

MSE[j|p] = El(f — p)°] |1]
it decomposes like this

MSE|[ji|p] = Var[ji|p] + (Bias[fi|p])?

So it encodes some relative weight to bias and variance. Need to think harder!



Unfolding & Regularization

he maximum likelihood solution for an untolding problem yields highly oscillatory solutions

e The inverse of transfer matrix has high condition number, the problem is “ill-posed”

e Solution: Tikhonov regularization

e Yields more physical solutions, smaller MS

True distribution Noisy data
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http://g2s3.com/labs/notebooks/inverseProblemPrototype.html

-, but they are biased (bias-variance trade off)
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From C. Bishop's PRML book

Reqgularization |

Fitting 10 data points to polynomials of degree M

e |ntuitive example of “overtitting” it M is large 6 AR .
-
e |ower order polynomial a “hard” torm of 1 v=s | M=o
t t
regularization / inductive bias | A\ o | ¢ 3
e |eads to bias it true solution isn’t a low-order | -
polynomia ; — T

Figure 1.4 Plots of polynomials having various orders M, shown as red curves, fitted to the data set shown in
Figure 1.2.



Reqgularization

Fitting 10 data points to polynomials of degree M
e |ntuitive example of “overfitting” it M is large

e |ower order polynomial a “hard” form ot
regularization / inductive bias

e | eads to bias if true solution isnt a low-order

polynomia

Alternatively, allow higher order polynomials ano

r

reqularize coefticients w to keep them small.

e Penalized least squares / ridge regression

~~

e Shrinkage / bias Ew) =53 {s(znw) — ta)* + 2wl

From C. Bishop's PRML book

X T
1} M=3 - 1} M=9
¢ t |
o %
0 © ot .
O 0/
-1 -1
1 1 1 L.l_
0 T 1 0 x 1

Figure 1.4 Plots of polynomials having various orders M, shown as red curves, fitted to the data set shown in
Figure 1.2.

0 1 0 1

Figure 1.7 Plots of M = 9 polynomials fitted to the data set shown in Figure 1.2 using the regularized error
function (1.4) for two values of the regularization parameter A\ correspondingto InA = —18 and In\ = 0. The
case of no regularizer, i.e., A = 0, corresponding to In A\ = —oo, is shown at the bottom right of Figure 1.4.



Gaussian Processes

A more extreme version of this strategy is to use Gaussian Processes
e Consider all possible functions (no analytic, parametric form assumed)

 Then put a prior over space of all possible tunctions detfined by:
* A Mean function u(x)
* A covariance kernel 2(x, x") which quantifies cov|[ f(x), f(x)]
* f(x) ~ GP(u, X)

Physicist then models the mean u(x) and covariance kernel X(x, x')

e Fit of GP model to data has explicit, unique answer (just linear algebra)
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GAUSSIAN PROCESSES
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GAUSSIAN PROCESSES
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https://indico.cern.ch/event/395374/timetable/#41-scalable-gaussian-processes
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exoplanet Example
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with Meghan Frate & Daniel Whiteson
https://arxiv.org/abs/1709.05681

Gaussian Processes for HEP

Instead of fitting the dijet spectrum with an ad hoc 3-5 parameter function, use
GP with kernel motivated from physics

rrrrr lation Matrix

Final Kernel =

n
s 8 8 & 8 8
o o o o o o
o o o o o o

Poisson stats
+ Mass Resolution

+ Parton Density

Events

Functions

3 8 8 & 8 8
o o o o o o
o o

Significance



https://arxiv.org/abs/1709.05681

Bump Hunts

. : CMS
Classic bump hunt scans across a mass window Aa

looks for an excess in a localized region _
1500

e (usually 2-3x the mass resolution)

e Very mild “bias” on type of signal models 1000
e Number counting in the window, no signal 00|
shape

] ] | ] ] ] ] | I [ I e — | ] ] ] ] | ] ] ] ] | ] ]
110 120 130 140 150
m,, (GeV)

A narrow resonance search can add sensitivity by

using shape information
e Excess should be consistent with resolution

e Model dependence (width << resolution)



Gaussian Process for localized signals

The classic bump hunt will not distinguish between these two
situations with same number of events in mass window

e Leftis not physical, width of excess << resolution

 Rightis physical

e

top”
o« e \H»g

X X
With Gaussian processes we can specify signal to be a localized

excess of width # centered around m and mass resolution [

without having to specity the exact shape of the signa

Y(z,x') = Ae—3(@—2")* /1% ;=3 ((x—m)*+ (2’ —m)*) /1"

Sig.

Sig.

Events per bin

Events per bin
o

=
o
(%

=
o
I

101}

10°}

— Gaussian Process background only
— Gaussian Process signal-plus-background
® & Toy data with injected signal
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The paper

Information References (44) Citations (0)

Plots

https://arxiv.org/abs/1709.05681

Abstract (arXiv)
We describe a procedure for constructing a model of a smooth data spectrum using Gaussian processes rather
than the historical parametric description. This approach considers a fuller space of possible functions, is robust
at increasing luminosity, and allows us to incorporate our understanding of the underlying physics. We
demonstrate the application of this approach to modeling the background to searches for dijet resonances at the
Large Hadron Collider and describe how the approach can be used in the search for generic localized signals.

Note: *Temporary entry*
Note: 14 pages, 16 figures

Keyword(s): INSPIRE: background | CERN LHC Coll | dijet | resonance | data analysis method | Gauss model |

Modeling Smooth Backgrounds and Generic Localized Signals with Gaussian Processes

Meghan Frate, Kyle Cranmer, Saarik Kalia, Alexander Vandenberg-Rodes, Daniel Whiteson

Sep 17, 2017 - 14 pages

e-Print: arXiv:1709.05681 [physics.data-an] | PDF
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Takeaways

Main takeaways from those slides:
e Bias-variance tradeoft: Allowing for some bias may lead to better solutions

e Regularization is a technique for biasing models towards well behaved
solutions

 \We already do this in several settings where the thing we are estimating is
more complicated than a single number (e.g. untolding)

e \We can build models for the signal that aren’t based on QFT, but on other
descriptive properties

* e.g. smooth, localized excess comparable with detector resolution
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Statistical Decision Theory



Statistical Decision theory

© - States of nature;
 Background-only is true

e BSM Theory 1 is true

e BSM Theory 2 is true

http://theoryandpractice.org/stats-ds-book/statistics/statistical_decision_theory.html


http://theoryandpractice.org/stats-ds-book/statistics/statistical_decision_theory.html

Statistical Decision theory

© - States of nature; X - possible observations;

 Background-only is true e Data from LHC and other experiments

e BSM Theory 1 is true

e BSM Theory 2 is true

http://theoryandpractice.org/stats-ds-book/statistics/statistical_decision_theory.html
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Statistical Decision theory

© - States of nature; X - possible observations;

 Background-only is true e Data from LHC and other experiments

e BSM Theory 1 is true

e BSM Theory 2 is true

http://theoryandpractice.org/stats-ds-book/statistics/statistical_decision_theory.html

A - action to be taken

claim a discovery

bui
bui

®

®

a muon collider

next hadron collider


http://theoryandpractice.org/stats-ds-book/statistics/statistical_decision_theory.html

Statistical Decision theory

© - States of nature; X - possible observations; A - action to be taken
 Background-only is true e Data from LHC and other experiments e claim a discovery
e BSM Theory 1 is true  build a muon collider
e BSM Theory 2 is true e Dbuild next hadron collider

o(x|B) - statistical model (likelihood);
e Predictions of QFT + detector simulation etc.
n(B) - prior

 You don't need this for frequentist statistical statements, but you will probably need it for making decisions !

http://theoryandpractice.org/stats-ds-book/statistics/statistical_decision_theory.html
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Statistical Decision theory

© - States of nature; X - possible observations; A - action to be taken
 Background-only is true e Data from LHC and other experiments e claim a discovery
e BSM Theory 1 is true  build a muon collider
e BSM Theory 2 is true e Dbuild next hadron collider

o(x|B) - statistical model (likelihood);
e Predictions of QFT + detector simulation etc.
n(B) - prior

 You don't need this for frequentist statistical statements, but you will probably need it for making decisions !

O: X = A - decision rule (take some action based on observation)

e Some data analysis pipeline (either model-dependent or model-independent) that might claim "“discovery”
e The community planning process (e.g. Snowmass, European strategy, etc.); Lab decisions
L: © x A = R - loss function, real-valued function true parameter and action

e Usually not made explicit.

e Claim discovery when new physics is there +++; Claim discovery when no new physics - - -; Build collider that doesn’t discover what was
anticipated 777

http://theoryandpractice.org/stats-ds-book/statistics/statistical_decision_theory.html
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Statistical Decision theory

© - States of nature; X - possible observations; A - action to be taken
p(x|0) - statistical model (likelihood); (B) - prior
O: X = A - decision rule (take some action based on observation)

L: © x A = R - loss function, real-valued function true parameter and action

http://theoryandpractice.org/stats-ds-book/statistics/statistical_decision_theory.html


http://theoryandpractice.org/stats-ds-book/statistics/statistical_decision_theory.html

Statistical Decision theory

© - States of nature; X - possible observations; A - action to be taken
p(x|0) - statistical model (likelihood); m(B) - prior
O: X = A - decision rule (take some action based on observation)

L: © x A = R - loss function, real-valued function true parameter and action

R(B,0) = Epe)[L(B, 8)] - risk
e Function of both 8 and 6. We don’t know true value ot 6!
e |[fR(B,01) < R(B,52) for all B, then &1 “dominates” &2 and 02 is “inadmissible”
e But usually one rule is better for some 6, while the other is better for other values of 6
e Mini-max strategy: choose & that minimizes risk over all 8 — very conservative.

r(rt, O) = En(e)[ R(B,0)] - Bayes risk (expectation over 8 w.r.t. prior and possible observations)
e Bayes rule: choose & that minimize Bayes risk (w.r.t. prior m).
e Also averages over potential data, so you can choose 6 before seeing the data X

p(r[, O ‘ X )= En(e|x)[ L(B,0(x))] - expected loss (expectation over B w.r.t. posterior 1(B|x) )

e Here decision is conditioned on the data you actually collect. Still depends on prior m.

http://theoryandpractice.org/stats-ds-book/statistics/statistical_decision_theory.html
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e Priors used for decision making are subtly
different than priors for making statistical
statements about the data.

Statistical Decision theory

© - States of nature; X - possible observations; A - action to be taken

p(x|O) - statistical model (likelihood); n(6) - prior e |t's our I’iSl(/ loss so natural we get O yse
&: X = A - decision rule (take some action based on observation) our own priOr When making deCiSiOﬂS.

L: © x A = R - loss function, real-valued function true parameter and action

e Usually there implicitly in human decisions

R(6,0) = EpxalL(O, O)] - risk e \Without prior, what is the principle?
e Function of both 8 and 6. We don't know true value of 8!

e |[fR(B,01) < R(B,52) for all B, then &1 “dominates” &2 and 02 is “inadmissible”
e But usually one rule is better for some 6, while the other is better for other values of 6
e Mini-max strategy: choose & that minimizes risk over all 8 — very conservative.

r(rt, O) = En(e)[ R(B,0)] - Bayes risk (expectation over 8 w.r.t. prior and possible observations)
e Bayes rule: choose & that minimize Bayes risk (w.r.t. prior m).
e Also averages over potential data, so you can choose 6 before seeing the data X

p(r[, O ‘ X )= En(e|x)[ L(B,0(x))] - expected loss (expectation over B w.r.t. posterior 1(B|x) )

e Here decision is conditioned on the data you actually collect. Still depends on prior m.

http://theoryandpractice.org/stats-ds-book/statistics/statistical_decision_theory.html
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Not optimal, but not wrong



Thumbnail Sketch ot Analysis
We select a small subset of the collision events relevant for testing the
hypotheses we are considering.

And we design a summary statistic s that can distinguish between difterent
hypotheses we are considering.

e Then we run simulated collisions through the pipeline to make the prediction

for the null or “background-only” hypothesis and quantify systematic

uncertainties
T most of the work!

-

predicted distribution for the null




Thumbnail Sketch ot Analysis
We select a small subset of the collision events relevant for testing the
hypotheses we are considering.

And we design a summary statistic s that can distinguish between difterent
hypotheses we are considering.

e Then we run simulated collisions for a hypothetical particle or interaction to
make the prediction for alternate or “signal-plus-background” model

~ easy

a

predicted distribution for the alternate in Model A




Thumbnail Sketch ot Analysis
We select a small subset of the collision events relevant tfor testing the
hypotheses we are considering.

And we design a summary statistic s that can distinguish between difterent
hypotheses we are considering.

e Then we add the observed data

A

observed data + predicted distribution for the alternate in Model A




Thumbnail Sketch ot Analysis
We select a small subset of the collision events relevant tfor testing the
hypotheses we are considering.

And we design a summary statistic s that can distinguish between difterent
hypotheses we are considering.

e Then we test the hypothesis and write a paper

. Model A Rejected
] S

observed data + predicted distribution for the alternate in Model A




Thumbnail Sketch ot Analysis
We select a small subset of the collision events relevant for testing the
hypotheses we are considering.

And we design a summary statistic s that can distinguish between difterent
hypotheses we are considering.

e ... and graduate students graduate, analysis code rots, and it would be difficult
to reproduce or reuse this work

. Model A Rejected
] S

observed data + predicted distribution for the alternate in Model A




Reinterpretation

't we can capture the definition of the summary s(x) and the event selection, then
we can reuse the existing analysis

e \We just need to run simulated events for Model B through the pipeline ano

test the new signal+background alternate hypothesis
* |n that sense, the original analysis isn't “model-dependent”

 Not optimal, but not wrong

A A

. Model A Rejected *
— S —

observed data + predicted distribution for the alternate in Model A - Model B

Model B rejected
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RECAST

We proposed RECAST tramework in Oct 2010

e People said it couldnt be done, our workflows are too complicated

e Hard to get effort to work on it.

RECAST

Extending the Impact of Existing Analyses

Kyle Cranmer and Itay Yavin

Center for Cosmology and Particle Physics, Department of Physics, New York
University, New York, NY 10003

ABSTRACT: Searches for new physics by experimental collaborations represent a significant
investment in time and resources. Often these searches are sensitive to a broader class of
models than they were originally designed to test. We aim to extend the impact of existing
searches through a technique we call recasting. After considering several examples, which
illustrate the issues and subtleties involved, we present RECAST, a framework designed
to facilitate the usage of this technique.

Orig Proposal in 2010: [arXiv.org:1010.2506]


https://arxiv.org/abs/1010.2506

RECAST in action

ATLAS has started using RECAST to reinterpret SUSY and exotics searches
recast

e Also relevant for exotic BSM Higgs scenarios

ATLAS PUB Note

ATLAS PUB Note
ATLAS ATL-PHYS-PUB-2020-007 ~7_

ATLAS ATL-PHYS-PUB-2019-032 <7 EXPERTMENT
EXPERIMENT 27th March 2020
11th August 2019

Reinterpretation of the ATLAS Search for
Displaced Hadronic Jets with the RECAST
Framework

RECAST framework reinterpretation of an ATLAS
Dark Matter Search constraining a model of a dark
Higgs boson decaying to two b-quarks

The ATLAS Collaboration The ATLAS Collaboration

A recent ATLAS search for displaced jets in the hadronic calorimeter is preserved in RECAST
and thereafter used to constrain three new physics models not studied in the original work.
A Stealth SUSY model and a Higgs-portal baryogenesis model, both predicting long-lived
particles and therefore displaced decays, are probed for proper decay lengths between a few
cm and 500 m. A dark sector model predicting Higgs and heavy boson decays to collimated

The reinterpretation of a search for dark matter produced in association with a Higgs boson
decaying to b-quarks performed with RECAST, a software framework designed to facilitate
the reinterpretation of existing searches for new physics, is presented. Reinterpretation using
RECAST is enabled through the sustainable preservation of the original data analysis as

re-executable declarative workflows using modern cloud technologies and integrated with the by hadrons via lone-lived dark photons is al bed. Th _section i branchi i
N . . . . ) . S g photons is also probed. The cross-section times branching ratio
S wider CERN Analysis Preservation efforts. The reinterpretation targets a model predicting S for the Higgs channel is constrained between a few millimetres and a few metres, while for
. L . . . . L S gg )
= dark matter production in association W,lth a hypothetlcial dark Higgs boson decay.mg: mnto S a heavier 800 GeV boson the constraints extend from tenths of a millimetre to a few tens of
S b-quarks where the mass of the dark Higgs boson m is a free parameter, necessitating a ) . . . . o
oA ) ) ) ) S S ) g metres. The original data analysis workflow was completely captured using virtualisation
faithful reinterpretation of the analysis. The dataset has an integrated luminosity of 79.8 fb . . . . . . .
2 o ] _ Ay techniques, allowing for an accurate and efficient reinterpretation of the published result in
= and was recorded with the ATLAS detector at the Large Hadron Collider at a centre-of-mass » o . .
B . . > S terms of new signal models following the REcAsT protocol.
> v energy of 4/s = 13 TeV. Constraints on the parameter space of the dark Higgs model for a TS
E B fixed choice of dark matter mass m,, = 200 GeV exclude model configurations with a mediator E S
N 2 mass up to 3.2 TeV. Y
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RECAST in action

ATLAS has started using RECAST to reinterpret SUSY and exotics searches .

| | | recast
e Also relevant for exotic BSM Higgs scenarios
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RECAST + MUSIC

These signature based searches have some
sensitivity, but it is often unclear how to
interpret them

e Do they exclude a particular theory?

Pairing with RECAST addresses this
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CMS Physics Analysis Summary

Contact: cms-pag-conveners-exotica@cern.ch

2020/05/21

MUSIC, a model unspecific search for new physics, in pp
collisions at /s = 13 TeV

The CMS Collaboration

Results of the Model Unspecific Search in CMS (MUSIC) using data recorded by the
CMS detector at the LHC, during proton-proton collisions at a center of mass energy
of /s = 13 TeV in 2016 and corresponding to an integrated luminosity of 35.9 fb—1,
are presented. The MUSIC analysis aims to search for anomalies that could be probed
as signatures for phenomena beyond the standard model, and is based on the com-
parison of data with the expectation according to the standard model, determined
from simulations, in several hundred final states and multiple kinematic distribu-
tions. Events containing at least one lepton are classified based on their final state
topology, and an automated search algorithm subsequently surveys the data for de-
viations from the expectation. The sensitivity of the search is validated using multiple
methods. No significant deviations beyond the expectations have been found. For a
wide range of final state topologies, good agreement is found between the data and
simulation of the standard model.



RECAST + STXS overcomes model dependence

Different analysis strategies The model dependence in
STXS mainly connected to
o Highly optimised analyses targeting specific properties / operators how results are Conveyed.
— "best possible” sensitivity
—» very model specific e The phase space
o Fiducial and differential cross section measurements regions are just phase
— minimise model dependence Space regions, they
— relatively restricted sensitivity (hard to combine different channels) )
— re-interpretable outside experiment dOﬂ tassume any mOde‘
o Differential measurements in experimentally sensitive observables per e Paired with RECAST one

production mode (STXS)

— model dependence from production mode definition could remterpret any

— easy combination of different Higgs decay channels — sensitivity to mode] USiﬂg the STXS
large number of EFT operators .
~ re-interpretable outside experiment phase space regions

Saskia Falke Inputs to EFT fits 29/10/2020 3/22




RECAST & Combinations

Combining multiple searches is a strategy to enhance sensitivity

But a protocol is needed to combine ditferent analyses

A likelihood-based combination is a natural protocol, but it requires knowin

signal will populate all the different analyses

A model-independent combination isn't unique and may hurt sensitivity

With R

—CAS
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can run any signal through each analysis and then combine
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The spectrum revisited

General Search Standard Model

Bump Hunts EFT :
/ llMUSiCII p nggs
Model Model
Independent Dependent

Gaussian Processes allow us to specity model in a language other than QFT that captures
intuitive physics. Other approaches along these lines are possible & should be developed.

RECAST allows us to reuse analyses for other purposes, decouple original motivation
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The spectrum revisited

Unregularized
Anomaly detection General Search Standard Model

(Not good) / "MUSIC” Higgs

Model * ‘ Model
| D dent
ndependent Gaussian Processes RECAST of spenden
/ Regularized ML existing analyses

Bump Hunts EFT

Gaussian Processes allow us to specity model in a language other than QFT that captures
intuitive physics. Other approaches along these lines are possible & should be developed.

RECAST allows us to reuse analyses for other purposes, decouple original motivation
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Reconstructing the Higgs by exploiting causal structure

Don’t believe the media:

E # mc?
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Reconstructing the Higgs by exploiting causal structure

Don’t believe the media:

E # mc?
What Einstein really said.
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Reconstructing the Higgs by exploiting causal structure

Don’t believe the media:

E # mc?
What Einstein really said.
2 2\2 2
E* = (mc”)” + (|plc)
Every physics student knows energy and momentum are conserved

EHiggs — Ebefore — Eafter — E Ez

7
PHiggs — Pbefore — Pafter — E pz
()

Thus, we can estimate the mass of the Higgs particle with

MH = \/Eifter/c4 — |Datter|* /€




Collaborative Statistical Modeling
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Pendulum



P(theory | data)x P(data | theory) P(theory)

— Thomas Bayes




Traditional approaches in physics

* hand-crafted data analysis

* [argely guided by expert knowledge
and theoretical insights




Big Data & Deep Learning
® eschew expert knowledge

* end-to-end learning
® data-driven
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1. ASSOCIATION
ACTIVITY:  Seeing, Observing

QUESTIONS: What if I see ...?
(How are the variables related?
How would seeing X change my belief 1n Y?)

EXAMPLES: What does a symptom tell me about a disease?
What does a survey tell us about the
election results?




if 2. INTERVENTION
| ACTIVITY: Doing, Intervening

I QUESTIONS: What if 1do ...? How?
NS OYINT = "'l —— (What would Y be if I do X?

. D__Q [N_Gt:i How can I make Y happen?)

EXAMPLES:  If I take aspirin, will my headache be cured?

What if we ban cigarettes?




3. COUNTERFACTUALS

ACTIVITY: Imagining, Retrospection, Understanding

QUESTIONS: What if I had done ...2 Why?
(Was 1t X that caused Y? What 1f X had not
occurred? What if I had acted differently?)

EXAMPLES:  Was it the aspirin that stopped my headache?
Would Kennedy be alive 1f Oswald had not
killed him? What if I had not smoked for the
last 2 years?

— S —




A toy example Ferenc Huszar

- - - inFERENCe
Z = randn()

y=z+ 1+ sqgrt(3)*randn()

X=2Z

X = randn() y =1+ 2*randn()

y=x+ 1+ sqrt(3)*randn() X = (y-1)/4 + sqrt(3)*randn()/2

(O—( (O

0 " pearsonr = 0.47; g: $e.28 pearsonr = Og4; p = 9.839
® L ™ 6 ® o
4
4 4
2
2 2
> > >
0
0 0
-2 _2 _2
- o= 051 p = 2.5¢-34 -4 4
pearsonr = .5,p- Se- ®
-2 0 2 -2 0 2 -2 0 2
X X X

https://www.inference.vc/causal-inference-2-illustrating-interventions-in-a-toy-example/



https://www.inference.vc/causal-inference-2-illustrating-interventions-in-a-toy-example/

A toy example

(O—(

P(y|do(X)) = p(y|x)

randn()

X< X X

3
X + 1 + sqrt(3)*randn()
3

y

pearsonr=nan,p=1

o & A M o N b O @

2.50 2.75 3.00 3.25
X

3.50

OO

P(y|do(X)) = p(y)

+ 2*randn()

-1)/4 + sqrt(3)*randn()/2

X X X <
nonomon
WS W=

y

pearsonr=nan.,p=1

2.50 2.75 3.00 3.25 3.50
X

https://www.inference.vc/causal-inference-2-illustrating-interventions-in-a-toy-example/
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pearsonr=nan,p=1
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Ferenc Huszar

n

P(y|do(X)) = p(y)

randn()

+ 1 + sqgrt(3)*randn()

X< X X X N
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3
y4
3
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3
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STATISTICAL DECISION THEORY
&
JAMES-STEIN ESTIMATOR



Cramér-Rao Bound

The minimum variance bound on an unbiased estimator is given by the Cramer-Rao bound:

COV[@‘@O]ZJ ~ I ((9())

/ \

Expected error Inverse of
of best-fit parameter Fisher information

Fisher information matrix (is also a Riemannian metric! )

[0%logp(z|0)] =
IZJ[Q] = — I 0. 8?9‘ ) 0
i i OV i

Maximum Likelihood Estimators asymptofically reach this bound



STATISTICAL DECISION TH

- ORY

IN 1 SLID

© - States of nature: X - possible observations;

A - action to be taken

f(x|B) - statistical model; (B) - prior

O: X = A - decision rule (take some action based on observation)

L: © x A = R - loss function, real-valued function true parameter

and action

R(6,0) = EfxelL(0, 0)] - risk

Decisio

depends on unknown va

N rule that minim

1zes r

ue O

Isk
B

r(r, ©) = Ene)l R(B,0)] - Bayes risk (expectation over 6 w.r.t. prior

and possible observations)

Your risk, your prior

https://en.wikipedia.org/wiki/Admissible_decision_rule



CRAMER-RAO BOUND

The minimum variance bound on an estimator is given by the Cramer-
Rao inequality:
» simple univariate case:

Var[0|0] = E[(6 — E[0]6])*] |0
» For an unbiased estimator the Cramér-Rao bound states

A 1
Var|0|0| >
016) 2 7o
» where 1(0) Is the Fisher information
_nl|9 .y 9 ale
(Z(8),;,=E _8_0.,-ln f(X,(?)a—ejlnf(X,(?) 9_ .
» General form for multiple parameters:

cov[|0):; > I1(6)

1

Maximum Likelihood Estimators asymptofically reach this bound

85



JAMES-STEIN ESTIMATOR

Consider a standard multivariate Gaussian distribution for X

in n dimensions centered around [
.

- 4 1 (2 — ps)? Z
(&) = exp( ) A o
7;[[1 Vm . 1 |
1 + .. ® ‘!O‘!'Q ® [¢]

o« e . 0 0... [}
Goal: minimize mean-squared error 76\ X
2
1
0

5

%
MSE[) = E[|f — fl°]) e 1oz 3 45
MLE (unbiased) James-Stein (weird)
UWMLE — £ = — j ILALJSZ(l — )ZIZ
2 Bk



JAMES-STEIN ESTIMATOR

The James-Stein estimator seems like a horrible suggestion

) n—2\ _
s = (1 Bk ) ' 3
41 | - .
e clearly biased (MLE is not) 3;1 . :i}"'
o oy
e shifts towards origin is not 6543\ '
translationally invariant 2191 — 7 3 4 > :

X = X = x+A



JAMES-STEIN ESTIMATOR

The James-Stein estimator seems like a horrible suggestion

— 2
:&JS: (1 TL_ 2)$ 1
Z]] |

e clearly biased (MLE is not) 21
e shifts towards origin is not %g

translationally invariant
X = X =x+A

— James-Stein
| — MLE

Yet, it has smaller mean squared
error than MLE for n>2 |

35}

g
v
T

Mean Squared Error

e it “"dominates” the MLE

- 6 8 10 12 14 16 18 20
Dimensionality



BIAS/VARIANCE TRADEOFF

We introduced Bias and Variance of estimators
Var(i|u] = E[(it — Elfi|u])?] ]
Most physicist are allergic to the idea of a biased estimator
e try to find unbiased estimator with smallest variance
e hence importance of Cramér-Rao bound
But what if we just want to minimize the mean-squared error?

MSE[p|p] = E[(ft — )] |l

it decomposes like this
M SElji|u] = Var[fi|u] 4 (Biasi|])?

So it encodes some relative weight to bias and variance. Think harder!



STATISTICAL DECISION THEORY IN 1 SLID

© - States of nature; X - possible observations; A - action to be taken

f(x|B) - statistical model; m(B) - prior

O: X = A - decision rule (take some action based on observation)

L: © x A = R - loss function, real-valued function true parameter and action
R(©,0) = Eqxp)lL(O, O)] - risk

e A decision 0* rule dominates a decision rule & if and only if R(B,6%)< R(B,0) for all 6, and the inequality is strict for
some O.

e A decision rule is admissible it and only if no other rule dominates it; otherwise it is inadmissible
r(r, &) = Ene)l R(B,0)] - Bayes risk (expectation over B w.r.t. prior and possible observations)
o(rt, & | x) = Enel L(B,0(x))] - expected loss (expectation over 8 w.r.t. posterior 1(B]x) )

e &'is a(generalized) Bayes rule if it minimizes the expected loss

e under mild conditions every admissible rule is a (generalized) Bayes rule (with respect to some prior — possibly an
improper one and not necessarily your prior — that favors distributions where that rule achieves low risk). Thus, in
frequentist decision theory it is sufficient to consider only (generalized) Bayes rules.

e Conversely, while Bayes rules with respect to proper priors are virtually always admissible, generalized Bayes rules
corresponding to improper priors need not yield admissible procedures. Stein's example is one such famous

situation.
https://en.wikipedia.org/wiki/Admissible_decision_rule



