
Muography
Workshop

End-to-end simulation
framework

Generator

CRY: Cosmic RaY Shower Library

• A Monte Carlo parametric simulation:

• The flux and the kinematics of all secondaries (μ, n, p, e, γ,
π, K) tabulated from MCNPX*, assuming showers from
protons (1 GeV-100 TeV)

• Take into acccount geomagnetic effects on the cosmic flux
depending on the time (solar cycle), latitude and altitude
(provide 3 options : 0, 2100, 11300 m)

• Limited to flat surface (with surface = subboxLength² [m²])

Input setup file

Secondaries flux at sea level
[MeV]

(*)Monte Carlo N-Particle eXtended: is a widely used computer code for simulating the transport of particles, such as neutrons, photons, electrons, and other charged particles, through

various materials and complex geometries.

Generator : PrimaryGeneratorAction

• PartGun:
• G4ParticleGun is a generator provided by Geant4.
• This class generates primary particle(s) with a given momentum and position.

• GPS:
• The G4GeneralParticleSource (GPS) is part of the Geant4 toolkit for Monte-Carlo,

high-energy particle transport, GPS allows the user to control the following
characteristics of primary particles:
• Spatial sampling (2D or 3D surfaces such as discs, spheres, and boxes)
• Angular distribution (unidirectional, isotropic, cosine-law, beam or

arbitrary..)
• Spectrum (linear, exponential, power-law, Gaussian,..)

• CRY :
• Real flux generator (we need to link it to our Geant4 code):

• Shape: flat surface
• Energy: real spectrum of energy
• Momentum direction: zenith angle [0°,90°] and flat azimuthal angle

[0°,180°]
• Created geometry should be all the time in the negative Z direction

• Other cosmic rays generator: EcoMug and CORSIKA

Initialize the run

Specify the generated secondaries : 0== false && 1== true, in this case only muon are generated (we can
specify the charge of particle in case we need only positive or only negative)

SubboxLength : usually same as active area of detector

Number of particles by event: one by event

For visualisation : view points, filter on particle : in this case we see only muon+ trajectories

Number of events

Defined already in
PrimaryGeneratorMessenger.cc

Altitude sea level=> all your geometry should be below zero (Z<0)

Latitude: depend on the region

Date: month-day-year

Generator : cmd.file

Change the subbox length to 1

PhysicsList

• There are many different physics models, corresponding to a variety of approximations of the real phenomena.
• According to the application, one can be better than another.
• Simulation speed is important.
• A user can create their own PhysicsList.

• FTFP_BERT : Recommended physics list for High-Energy Physics.
Its main components are :
• FTF (Fritiof) hadronic string model, used above 3 GeV
• BERT (Bertini-like) intra-nuclear cascade model, used below 6 GeV
• Nucleus de-excitation : Precompound + evaporation models
• Neutron capture
• Nuclear capture of negatively charged hadrons at rest
• Hadron elastic
• Gamma- , electron- , and muon-nuclear
• Standard electromagnetic physics

Few Other Physics Lists

FTFP_BERT_H
P

FTFP_INCLXX QGSP_BERT QGSP_BIC

PhysicsList

Exercice 1 : Upload new Project
• Upload the new B1_BNDScool1 and placed in the same directory of B1 basic example

(/home/usr/micromamba/envs/geant-root/share/Geant4-11.0.3/examples/basic/)

• Open CMackList.txt : change the path to CRY (/home/usr/micromamba/envs/geant-root/cry_v1.7)

• Open PrimaryGeneratorAction.cc (in src directory) : change the path to the data of CRY
(/home/usr/micromamba/envs/geant-root/cry_v1.7/data)

 Save

• Open terminal
• cd /home/usr/micromamba/envs/geant-root/share/Geant4-11.0.3/examples/basic/B1_BNDSchool1

• mkdir build

• cd build

• micromamba activate geant-root

• cmake ../

• make

• ./exampleB1

CMackeLists.txt

PrimaryGeneratorAction.cc

Exercice 2: Change the Physics List

• Open exampleB1.cc:

1. #include "FTFP_BERT.hh"

2. Change your PhysicsList from QBBC to FTFP_BERT

// Physics list

G4VModularPhysicsList* physicsList = new FTFP_BERT;

 Save , then make and compile

exampleB1.cc

Sensitive detector
"SD" and Hits

Hit and sensitive
detector
• A SD can be used to simulate the "read-

out" of your detector:

• A way to declare a geometric element
"sensitive" to the passage of particles,
for example : scintillator bar (for
scintillator detector), gas-gap (for RPC
detector)..

• Gives the user a handle to collect
physical quantities from the
interaction of particle with those
elements, for example : energy
deposited, kinetic energy, position,
time information ….

Geometry

=>The principal mandate of a sensitive detector is the construction of hit objects using
information from steps along a particle track.

Create a SD

Strategy:
• Create your detector geometry

• Solids, logical volumes, physical volumes
• Implement a sensitive detector and assign an instance of it to the logical volume of your

geometry set-up
• Then this volume becomes “sensitive”
• Sensitive detectors are active for each particle steps, if the step starts in this volume

• Create hits objects in your sensitive detector using information from the particle step
• You need to create the hit class(es) according to your requirements

• Store hits in hits collections (automatically associated to the G4Event object)
• Finally, process the information contained in the hit in user action classes

(e.g.G4UserEventAction) to obtain results to be stored in the analysis object

G4VSensitiveDetector

MySensitiveDetector

G4VHit

MyHit

Hits
• A hit is a snapshot of the physical interaction of a track in the sensitive region of a detector. In it you can

store information associated with a G4Step object. This information can be:
• the position and time of the step,

• the momentum and energy of the track,

• the energy deposition of the step,

• geometrical information

• Hit is represented by G4VHit class that have 2 virtual methods

• During the processing of given event represented by G4Event, many objects of the hit class will be produced,
collected and associated with the event.

• Therefore, for each concrete hit class you must also prepare a concrete class derived from G4VHitsCollection, a
class which represents a vector collection of user defined hits.

• G4THitsCollection: is a template class derived from G4VHitsCollection, and the concrete hit collection class of
a particular G4VHit concrete class can be instantiated from this template class.

• Each object of a hit collection must have a unique name for each event.

• G4Event has a G4HCofThisEvent class object, that is a container class of collections of hits. Hit collections are
stored by their pointers, whose type is that of the base class.

Draw(): To draw your concrete hits Print(): To print out your concrete hits

Hits

Constructor and destructor of the class

Draw and print methods

Define the Set and Get method

Define variables

Hit collection

Hit.hh

Create a SD
Write your sensitive detector class using
G4VSensitiveDetector.hh

 ProcessHits():

• This method is invoked by G4SteppingManager: when a
step is composed in the G4LogicalVolume which has the
pointer to this sensitive detector.

• The first argument of this method is a G4Step object of the
current step.

• The second argument is a G4TouchableHistory object for
the readout geometry described in the next slides.

• In this method, one or more G4VHit objects should be
constructed if the current step is meaningful for your
detector.

 Initialize():

• This method is invoked at the beginning of
each event. The argument of this method
is an object of the G4HCofThisEvent class.

• Hit collections, where hits produced in this
particular event are stored,can be
associated with the G4HCofThisEvent
object in this method.

 EndOfEvent():

• This method is invoked at the end of
each event.

• The argument of this method is the
same object as Initialize() method.

• Hit collections occasionally created in
your sensitive detector can be
associated with the G4HCofThisEvent
object.

MySensitiveDetector.hh

Specify a hits collection (by its unique name) for each type of hits considered in the
sensitive detector: Insert the name(s) in the collectionName vector

The AddHitsCollection() method of G4HCofThisEvent requires the collection ID

The unique collection ID can be obtained with GetCollectionID():
• GetCollectionID() cannot be invoked in the constructor of this SD class (It is required that the SD is

instantiated and registered to the SD manager first).
• we defined a private data member (collectionID), which is set at the first call of the Initialize() function.

Generate hit(s) or accumulate data to existing hit objects, by using information from the current
step (Use some methods for tracking detector)

Attach hit to each variable (implement in Hit class)

Invoked at the end of each event

Create a SD

MySensitiveDetector.cc

Insert the hit to the collection

Exercice 3: Attach sensitive detector to your detector pannel

• Open DetectorConstruction.hh:

1. Add a public virtual void method ConstructSDandField() in the DetectorConstruction class:

public:

virtual void ConstructSDandField();

• Open DetectorConstruction.cc :

1. Include your SD header and SDManager:

#include "MySensitiveDetector.hh"

#include "G4SDManager.hh"

 2. Call your ConstructSDandField() method at the end of the code (outside DetectorConstruction::Construct()):

• Create an instance to your SD class,

• Register your SD to SDManager

• Assign the sensitive logic volume in your geometry

GetScoringVolume(): return fScoringVolume ==> logicDetector

DetectorConstruction.hh

DetectorConstruction.cc

void DetectorConstruction::ConstructSDandField()
{

G4String SDname;
G4SDManager::GetSDMpointer()->SetVerboseLevel(1);
//Declare SensitiveDetector
MySensitiveDetector *SensitiveDetector = new MySensitiveDetector("SensitiveDetector");

G4SDManager::GetSDMpointer()->AddNewDetector(SensitiveDetector);
GetScoringVolume()->SetSensitiveDetector(SensitiveDetector);

}

Exercice 4: Get Pannel ID

• Open Hit.hh:

1. Add private variable:

private:

G4int fPannelID;

2. Define public Set and Get methods :

void SetPannelID(G4int z) { fPannelID = z; };

G4int GetPannelID() const { return fPannelID; };

• Open MySensitiveDetector.cc go to ProcessHits(G4Step *aStep, G4TouchableHistory *R0hist):

• Access to the physical volume of your SD :

G4VPhysicalVolume* volume = aStep->GetPreStepPoint()->GetTouchableHandle()->GetVolume();

• Get the ID of volume using GetCopyNo:

G4int PannelCopyNo = volume->GetCopyNo();

• Set the Pannel Copy :

hit->SetPannelID(PannelCopyNo);

Hit.hh

MySensitiveDetector.cc

Exercice 5.a: Get Position information

• In Hit.hh:

1. I already define the variable and the Set && Get methods :

G4ThreeVector fPos;

&&

void SetPos(G4ThreeVector xyz) { fPos = xyz; };

G4ThreeVector GetPos() const { return fPos; };

• Open MySensitiveDetector.cc go to ProcessHit():

• Use Steping method to follow the particle :

auto prestep = aStep->GetPreStepPoint();

• Get the position of the particle at each step

G4ThreeVector posHit = prestep->GetPosition();

• Set the position :

hit->SetPos(posHit);

MySensitiveDetector.cc

Exercice 5.b: Get PDG

• In Hit.hh:

1. I already define the variable and the Set && Get methods :

G4double fPDG;

&&

void SetPos(G4double id) { fPDG = id; };

G4double GetPDG() const { return fPDG; };

• Open MySensitiveDetector.cc go to ProcessHit():

• Get your track

auto track = aStep->GetTrack();

• Get the PDG for this track

G4double pdg = track->GetDefinition()->GetPDGEncoding();

• Set the PDG:

hit->SetPDG(pdg);

MySensitiveDetector.cc

Retrive index: index numbers of a hit collection are unique and don't change for a run

Retrive all hits collection

Retrive hits collection by index

Pointer to the hit collection for each event

Size of the collection

Loop over individual hits and retrieve the data (using the Get methods defined in Hit class) Store the output in analysis
objects (ROOT output)

Create a SD

EventAction.cc

1. Open EventAction and go to EndOfEventAction():

2. Go in the loop over the number of hits :
1. Extract the x,y,z position of your hit in the detector and the pannel ID that your hit (particle) passes through it

G4cout << "X Position for hit : " << pos.x()
<< ", Y Position for hit : " << pos.y()
<< ", Z Position for hit : " << pos.z()
<< ", Pannel: " << hit->GetPannelID()
<< G4endl;

Save

 3. Open cmd.file
1. change number of beam to 5: /run/beam 5
2. Save

4. make and compile :
1. make
2. ./exampleB1 cmd.file

What do you see in your terminal?

Exercice 6: Get Hit information

1. Open EventAction and go to EndOfEventAction():

2. Go in the loop over the number of generated particles:
1. Extract the name, PDG and momentum of your generated particle

G4cout << "TrackID: " << primary->GetTrackID()
<< ", Particle type: " << primary->GetG4code()->GetParticleName()
<< ", PDG encoding: " << primary->GetG4code()->GetPDGEncoding()
<< ", Momentum " << primary->GetMomentum()
<< G4endl;

Save

 3. Open cmd.file
1. change number of beam to 5: /run/beam 5
2. Save

4. make and compile :
1. make
2. ./exampleB1 cmd.file

What do you see in your terminal?

Exercice 6: Get Hit information

	Diapositive 1 Muography Workshop
	Diapositive 2 Generator
	Diapositive 3 CRY: Cosmic RaY Shower Library
	Diapositive 4 Generator : PrimaryGeneratorAction
	Diapositive 5 Generator : cmd.file
	Diapositive 6 PhysicsList
	Diapositive 7 PhysicsList
	Diapositive 8 Exercice 1 : Upload new Project
	Diapositive 9 Exercice 2: Change the Physics List
	Diapositive 10 Sensitive detector "SD" and Hits
	Diapositive 11 Hit and sensitive detector
	Diapositive 12 Create a SD
	Diapositive 13 Hits
	Diapositive 14
	Diapositive 15 Create a SD
	Diapositive 16 Create a SD
	Diapositive 17 Exercice 3: Attach sensitive detector to your detector pannel
	Diapositive 18 Exercice 4: Get Pannel ID
	Diapositive 19 Exercice 5.a: Get Position information
	Diapositive 20 Exercice 5.b: Get PDG
	Diapositive 21 Create a SD
	Diapositive 22
	Diapositive 23

