Quantum computing Fault-tolerant quantum computing

Federico Meloni (DESY)

BND Graduate School 2023

10/08/2023

Who am I?

[^0]2018 - current Staff scientist DESY

2014-2017 Postdoctoral researcher 2017-2018 "Oberassistent" University of Bern

Software and computing

Today

Education

Introduction

A useful Quantum Computer needs to be:

- Universal and General Purpose: not limited to a single class of problems
- Accurate: probability of error on the output can be arbitrarily small
- Scalable: resource requirements do not grow exponentially in the size of target error probability of the computation

Building Quantum Computers is challenging:

- Quantum information is inherently fragile
- Not a pure engineering problem: understanding the underlying physics still matters a lot!
- Current devices are noisy. We don't expect quantum devices to be as good as classical transistors for information processing

Where are we?

Fault-Tolerant quantum computers aim to achieve a useful quantum computer given imperfect devices underneath

- Using encoded quantum data will require $\mathrm{O}(1000)$ more physical qubits
- The small devices available today serve as demonstrators for theoretical concepts (e.g., error correction) applicable to more reliable platforms

Fault-tolerant classical computing

A fault-tolerant computing protocol maintains general purpose computations efficiently in the presence of faults during the computation

Computational Model: circuits in which each gate has exactly one output Noise Model: ideal gates followed by a bit flip with probability p Goal:

$$
\begin{aligned}
& \text { approximate the ideal circuit to precision } \varepsilon \text { using faulty } \\
& \text { gates }
\end{aligned}
$$

Approach: encode the data and process it with encoded gates which suppress the spread of errors

The classical threshold theorem

A g-gate ideal circuit can be simulated to precision ε by an $\mathbf{O}(\mathrm{g} \log (\mathrm{g} / \varepsilon))$-gate faulty circuit
von Neumann,
Automata Studies. (AM-34), 1956

- As long as gate error $p<p_{c}$, the accuracy threshold for classical computation

The quantum threshold theorem

A quantum circuit is fault-tolerant against t failures if failures in t elements results in at most t errors per code block (group of qubits corrected together)

There exists a physical error probability p_{c} below which an arbitrary quantum computation can be performed efficiently

- 2-input gate accuracy threshold [0802.1464]
- At k levels of encoding, the effective error rate P_{L} scales as $p_{c}\left(p / p_{c}\right)^{2 k}$. For a computation of length N, we need $\log (\log N)$ levels of encoding

How can we achieve fault tolerant QC?

A series of problems seem to prevent the possibility of fault-tolerant quantum computing:

- The no-cloning theorem
- The collapse of the state after measurement
- Unitary operations are continuous (not discrete)

Despite these problems, quantum error correction is possible (l'll give just one example, you'll see more details in Jeanette's lecture tomorrow)

- We can use methods from classical error correction

Classical bit flips

We can use redundancy to code the information

$$
\begin{aligned}
0 & \rightarrow 000 \\
1 & \rightarrow 111
\end{aligned}
$$

We use majority voting to "correct" errors

$$
\begin{aligned}
000,001,010,100 & \rightarrow 000 \\
111,110,101,011 & \rightarrow 111
\end{aligned}
$$

In this way, we can correct errors that affect only a single bit

Quantum bit flips

We can extend the previous idea to the quantum domain

We use three qubits to code one

$$
\begin{aligned}
|0\rangle & \rightarrow|000\rangle \\
|1\rangle & \rightarrow|111\rangle
\end{aligned}
$$

By linearity

$$
\alpha|0\rangle+\beta|1\rangle \rightarrow \alpha|000\rangle+\beta|111\rangle
$$

It does NOT violate the no-cloning theorem

The circuit for encoding is simple

Detecting and correcting bit flips

We can detect qubit flips without measuring them by using additional qubits

$$
\begin{aligned}
|000\rangle,|111\rangle & \rightarrow|00\rangle & |001\rangle,|110\rangle & \rightarrow|01\rangle \\
|010\rangle,|101\rangle & \rightarrow|10\rangle & |100\rangle,|011\rangle & \rightarrow|11\rangle
\end{aligned}
$$

Detecting and correcting bit flips

We can detect qubit flips without measuring them by using additional qubits

$$
\begin{aligned}
|000\rangle,|111\rangle & \rightarrow|00\rangle & |001\rangle,|110\rangle & \rightarrow|01\rangle \\
|010\rangle,|101\rangle & \rightarrow|10\rangle & |100\rangle,|011\rangle & \rightarrow|11\rangle
\end{aligned}
$$

$|0\rangle$
$|0\rangle$

Detecting and correcting bit flips

We can detect qubit flips without measuring them by using additional qubits

$$
\begin{aligned}
|000\rangle,|111\rangle & \rightarrow|00\rangle & |001\rangle,|110\rangle & \rightarrow|01\rangle \\
|010\rangle,|101\rangle & \rightarrow|10\rangle & |100\rangle,|011\rangle & \rightarrow|11\rangle
\end{aligned}
$$

$|0\rangle$

Detecting and correcting bit flips

We can detect qubit flips without measuring them by using additional qubits

$$
\begin{aligned}
|000\rangle,|111\rangle & \rightarrow|00\rangle & |001\rangle,|110\rangle & \rightarrow|01\rangle \\
|010\rangle,|101\rangle & \rightarrow|10\rangle & |100\rangle,|011\rangle & \rightarrow|11\rangle
\end{aligned}
$$

Detecting and correcting bit flips

We can detect qubit flips without measuring them by using additional qubits

$$
\begin{aligned}
|000\rangle,|111\rangle & \rightarrow|00\rangle & |001\rangle,|110\rangle & \rightarrow|01\rangle \\
|010\rangle,|101\rangle & \rightarrow|10\rangle & |100\rangle,|011\rangle & \rightarrow|11\rangle\rangle
\end{aligned}
$$

We can measure the additional qubits and apply an error correction operation:

$$
\begin{array}{ll}
\mid 00>=\text { all good } & \mid 01>=\text { invert the third qubit } \\
\mid 10>=\text { invert the second qubit } & \mid 11>=\text { invert the first qubit }
\end{array}
$$

Quantum

Fourier

Transform

QFT != Quantum Field Theory

Now, let's assume we had an ideal quantum computer. What could we do with it?

The Quantum Fourier Transform (QFT) is widely used in quantum computing
A general quantum state $|\varphi\rangle$ on n qubits can be written

$$
|\varphi\rangle=\sum_{j=0}^{2^{n}-1} a_{j}|j\rangle_{n}=\sum_{j=0}^{N-1} a_{j}|j\rangle_{n} \quad \text { for } N=2^{n}
$$

There are N amplitudes a_{j} corresponding to the N standard basis kets $\langle j\rangle$
For a fixed $|\varphi\rangle$, we get a complex-valued function where $a(j)=a_{j}$, with $1=\sum_{j=0}^{N-1}\left|a_{j}\right|^{2}$

The quantum Fourier Transform of $|\varphi\rangle$ is
QFT $_{n}:|\varphi\rangle=\sum_{j=0}^{N-1} a_{j}|j\rangle_{n} \rightarrow \sum_{j=0}^{N-1} b_{j}|j\rangle_{n} \quad$ with $\quad b_{j}=\frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} a_{k} \omega^{j k}$ and $\omega=e^{\frac{2 \pi i}{N}}$

In matrix form

$$
\mathbf{Q F T}_{n}=\frac{1}{\sqrt{N}}\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & \cdots & 1 \\
1 & \omega & \omega^{2} & \omega^{3} & \cdots & \omega^{N-1} \\
1 & \omega^{2} & \omega^{4} & \omega^{6} & \cdots & \omega^{2(N-1)} \\
1 & \omega^{3} & \omega^{6} & \omega^{9} & \cdots & \omega^{3(N-1)} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \omega^{N-1} & \omega^{2(N-1)} & \omega^{3(N-1)} & \cdots & \omega^{(N-1)(N-1)}
\end{array}\right]
$$

In matrix form (after some massaging)

$$
\mathbf{Q F T}_{n}=\frac{1}{\sqrt{N}}\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & \cdots & 1 \\
1 & \omega & \omega^{2} & \omega^{3} & \cdots & \omega^{N-1} \\
1 & \omega^{2} & \omega^{4} & \omega^{6} & \cdots & \omega^{N-2} \\
1 & \omega^{3} & \omega^{6} & \omega^{9} & \cdots & \omega^{N-3} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \omega^{N-1} & \omega^{N-2} & \omega^{N-3} & \cdots & \omega
\end{array}\right]
$$

Interesting fact: for $\mathrm{n}=1$

$$
\mathrm{QFT}_{1}=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & (-1)^{1}
\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]=\mathrm{H}
$$

but this is not true in general!

QFT circuit

The circuit in the figure implements the QFT

- The R gates in the circuit are what we call $R_{z}\left(2 \pi / 2^{k}\right)$
- The number of gates is quadratic in \mathbf{m}, an exponential speed-up over the classical case (FFT)

Two properties of the QFT will be very useful in a moment:

- Shift-invariance (up to an unobservable phase)
- QFT transforms sequences with period r into sequences with period M / r (where $M=2^{m}$)

Shor's algorithm

Introduction

Shor's algorithm is, probably, the most famous quantum algorithm

- It finds a factor of a n -bit integer in time $O\left(n^{2}(\log n)(\log \log n)\right)$
- The best classical algorithm that we know of for the same task needs time $\mathrm{O}\left(\mathrm{e}^{\mathrm{cn} / 3(\log \mathrm{n}) 2 / 3}\right)$
- Dramatic consequences for current cryptography (RSA)

Drawing taken from: @MinutePhysics

How does RSA work?

RSA is a security protocol to allow others to send you secure communications.

- You publish a public key used to encrypt these messages intended for you. Anyone who has access to the key can use it.
- There is an additional key, your private key. You and only you have it. With it you can decrypt and read the encrypted messages.

Public key: a pair of numbers (e, n), with n an integer (product of two primes)
Private key: a pair of numbers (d, n), with the same n as the public key

$$
\left(m^{e}\right)^{d} \equiv m(\bmod \mathbf{n})
$$

Knowing e and n, or even m, it can be extremely difficult to find d

Example (from wikipedia)

1. Choose two distinct prime numbers ($\mathrm{p}=61$ and $\mathrm{q}=53$), $\mathrm{n}=\mathrm{pq}=3233$.

Example (from wikipedia)

1. Choose two distinct prime numbers $(p=61$ and $q=53), n=p q=3233$.
2. Compute $\lambda(n)=\operatorname{lcm}(p-1, q-1)=\operatorname{lcm}(60,52)=780$

Example (from wikipedia)

1. Choose two distinct prime numbers ($\mathrm{p}=61$ and $\mathrm{q}=53$), $\mathrm{n}=\mathrm{pq}=3233$.
2. Compute $\lambda(n)=\operatorname{lcm}(p-1, q-1)=\operatorname{lcm}(60,52)=780$
3. Choose any number $1<\mathrm{e}<780$ that is coprime to 780 . If we choose a prime number, we only have to check it is not a divisor of 780 . Let $\mathrm{e}=17$.

Example (from wikipedia)

1. Choose two distinct prime numbers ($\mathrm{p}=61$ and $\mathrm{q}=53$), $\mathrm{n}=\mathrm{pq}=3233$.
2. Compute $\lambda(n)=\operatorname{lcm}(p-1, q-1)=\operatorname{lcm}(60,52)=780$
3. Choose any number $1<e<780$ that is coprime to 780 . If we choose a prime number, we only have to check it is not a divisor of 780 . Let $\mathrm{e}=17$.
4. Compute d, the modular multiplicative inverse of $e(\bmod \lambda(n)), d=413$

$$
1=(17 \times 413) \bmod 780
$$

Example (from wikipedia)

1. Choose two distinct prime numbers ($\mathrm{p}=61$ and $\mathrm{q}=53$), $\mathrm{n}=\mathrm{pq}=3233$.
2. Compute $\lambda(n)=\operatorname{lcm}(p-1, q-1)=\operatorname{lcm}(60,52)=780$
3. Choose any number $1<\mathrm{e}<780$ that is coprime to 780 . If we choose a prime number, we only have to check it is not a divisor of 780 . Let $\mathrm{e}=17$.
4. Compute d, the modular multiplicative inverse of $e(\bmod \lambda(n)), d=413$

$$
1=(17 \times 413) \bmod 780
$$

The public key is $(\mathrm{n}=3233, \mathrm{e}=17)$. The encryption function is

$$
c(m)=m^{e} \bmod n=m^{17} \bmod 3233
$$

The private key is $(\mathrm{n}=3233, \mathrm{~d}=413)$. The decryption function is

$$
m(c)=c^{d} \bmod n=c^{413} \bmod 3233
$$

Example (from wikipedia)

1. Choose two distinct prime numbers ($\mathrm{p}=61$ and $\mathrm{q}=53$), $\mathrm{n}=\mathrm{pq}=3233$.
2. Compute $\lambda(n)=\operatorname{lcm}(p-1, q-1)=\operatorname{lcm}(60,52)=780$
3. Choose any number $1<\mathrm{e}<780$ that is coprime to 780 . If we choose a prime number, we only have to check it is not a divisor of 780 . Let $\mathrm{e}=17$.
4. Compute d, the modular multiplicative inverse of $e(\bmod \lambda(n)), d=413$

$$
1=(17 \times 413) \bmod 780
$$

The public key is $(\mathrm{n}=3233, \mathrm{e}=17)$. The encryption function is

$$
c(m)=m^{e} \bmod n=m^{17} \bmod 3233
$$

The private key is $(\mathrm{n}=3233, \mathrm{~d}=413)$. The decryption function is

$$
m(c)=c^{d} \bmod n=c^{413} \bmod 3233
$$

For the message $m=65: \quad c(m)=65^{17} \bmod 3233=2790$ $\mathrm{m}(\mathrm{c})=2790^{413} \bmod 3233=65$

What if we could compute your private key from the public key?

The algorithm

1. Given N , check that N is not a prime or power of a prime. If it is, stop.
2. Choose $1<a<N$ at random
3. If $b=\operatorname{gcd}(a, N)>1$, output b and stop
4. Find the order of $a \bmod N\left(r>0\right.$ such that $\left.a^{r} \equiv 1 \bmod N\right)$
5. If r is odd, go to 2
6. Compute

$$
x=a^{r / 2}+1 \bmod N \quad y=a^{r / 2}-1 \bmod N
$$

7. If $x=0$, go to 2 . If $y=0$, take $r=r / 2$ and go to 5 .
8. Compute $p=\operatorname{gcd}(x, N)$ and $q=\operatorname{gcd}(y, N)$. At least one of them will be a non-trivial factor of N

Every step, apart from 4 can be carried out efficiently on a classical computer. For step 4, there exists a circuit with a number of gates which is polynomial in n (the number of bits of N)

The quantum order-finding routine

Example

If $a=2, N=5, m=4$, we would have

$$
1 / 4(|0\rangle|1\rangle+|1\rangle|2\rangle+|2\rangle|4\rangle+|3\rangle|3\rangle+|4\rangle|1\rangle+\ldots+|15\rangle|3\rangle)
$$

and when we measure we could obtain, for instance

$$
1 / 2(|1\rangle|2\rangle+|5\rangle|2\rangle+|9\rangle|2\rangle+|13\rangle|2\rangle)
$$

Note that the values of the first register are exactly 4 units apart and that

$$
2^{4}=1 \bmod 5
$$

In general, we will obtain values that are r units apart, where $a^{r}=1 \bmod N$

The quantum order-finding routine

Properties of the QFT:

- Shift-invariance
- QFT transforms sequences with period r into sequences with period M / r (where $\mathrm{M}=2^{\mathrm{m}}$)

Quantum phase estimation

Suppose we are given a unitary operation U and one of its eigenvectors $|\psi\rangle$

- We know that there exists $\theta \in[0,1)$ such that $U|\psi\rangle=e^{2 \pi i \theta}$
- We can estimate θ with the circuit shown above

The circuit before the QFT will prepare $\frac{1}{\sqrt{2^{m}}} \sum_{k=0}^{2^{m}-1} e^{2 \pi i \theta k}|k\rangle$
By using the inverse QFT we can measure $\mathrm{j} \approx 2^{\mathrm{m}} \theta$

Shor's algorithm case

The circuit used in Shor's algorithm is a case of quantum phase estimation

- The (unitary) operation of modular multiplication by a has eigenvalues

$$
e^{2 \pi i \frac{k}{r}} \quad k=0, \ldots, r-1
$$

where r is the period of a

- It is not easy to prepare one of the eigenvectors $\left|\psi_{k}\right\rangle$ of the unitary operation
- But we use the fact that $|1\rangle=\frac{1}{\sqrt{r}} \sum_{k=0}^{r-1}\left|\psi_{k}\right\rangle$
- We will get a random integer of the form $\mathrm{k} / \mathrm{r} 2^{2 \mathrm{~m}}$ for random $\mathrm{k}=0,1, \ldots, \mathrm{r}-1$
- We can then re-run the quantum subroutine several times to extract r
- Internet security is now destroyed

Grover's algorithm

(time-dependent bonus / might skip)

Introduction

Grover's algorithm is used to solve search problems

- Imagine we have an unsorted list of N elements
- One of them verifies a certain condition and we want to find it
- Any classical algorithm requires $\mathrm{O}(\mathrm{N})$ queries to the list in the worst case
- Grover's algorithm can find the element with $O(\sqrt{ } N)$ queries

The oracle function

We are given a circuit (an oracle) that implements a one-bit boolean function
An oracle is treated as a black box, a circuit whose interior we cannot know

- This circuit computes, in a reversible way, a certain function f
- For the computation to be reversible, it uses as many inputs as outputs and "writes the result" with an XOR

The oracle computes the function f : $\{0,1\}^{n} \Rightarrow\{0,1\}$ (with $N=2^{n}$)

- The element we want to find is the one that verifies $f(x)=1$

The strategy

The quantum search algorithm is based on the idea of inversion about the mean

Average of all Amplitudes

Flip all Amplitudes around Avg

Image credits: quantumcomputing.stackexchange.com

Using the oracle to negate the amplitude

We create the state $|0 \ldots 0\rangle|1\rangle$
We use Hadamard gates to create the superposition

$$
\sum_{x \in\{0,1\}^{n}} \frac{1}{\sqrt{2^{n+1}}}|x\rangle(|0\rangle-|1\rangle)
$$

We apply the oracle, getting

$$
\begin{gathered}
\sum_{x \in\{0,1\}^{n}} \frac{1}{\sqrt{2^{n+1}}}|x\rangle(|0 \oplus f(x)\rangle-|1 \oplus f(x)\rangle)= \\
\sum_{x \in\{0,1\}^{n}} \frac{(-1)^{f(x)}}{\sqrt{2^{n+1}}}|x\rangle(|0\rangle-|1\rangle)
\end{gathered}
$$

Grover's algorithm
 $O(\sqrt{N})$

Grover's algorithm performs $\mathrm{O}(\sqrt{ } \mathrm{N})$ iterations, each one consisting of two steps

- The oracle "marks" those states that verify the condition
- The diffusion operator "amplifies" the amplitudes of the marked states

Reflection \times Reflection = Rotation

If we denote by $\left|x_{1}\right\rangle$ the marked element, the initial state of the upper n qubits is

$$
\underbrace{\sqrt{\frac{N-1}{N}}}_{\cos \theta}\left|x_{0}\right\rangle+\underbrace{\sqrt{\frac{1}{N}}}_{\sin \theta}\left|x_{1}\right\rangle
$$

If D is the diffusion operator and $G=D O_{f}$

- G acts on the 2-dimensional space spawned by $\left|x_{0}\right\rangle$ and $\left|x_{1}\right\rangle$ as a rotation of angle 2θ

After m iterations:

$$
\cos (2 m+1) \theta\left|x_{0}\right\rangle+\sin (2 m+1) \theta\left|x_{1}\right\rangle
$$

In order to obtain $\left|x_{1}\right\rangle$ with high probability when we measure we need

$$
(2 m+1) \theta \approx \frac{\pi}{2}
$$

The solution

When we measure, we will obtain x such that $\mathrm{f}(\mathrm{x})=1$ depending on:

- The number m of iterations
- The fraction of values x that satisfy the condition

If we perform too many iterations, we can overshoot and not find a marked element

It can be shown that no other quantum algorithm can obtain more than a quadratic speed-up over over classical algorithms in the same setting

Conclusions

DIRT AND RADIATION ARE BAD $=$

JOSEPHSON JUNCTIONS CANDO SO MANY THINGS \#=金

Summary

Discussed the concept of fault-tolerant quantum computing

- Gave one example of error correction

Discussed some of the most famous quantum algorithms

- Quantum Fourier Transform
- Shor's algorithm
- (maybe) Grover's algorithm

Hands-on demonstrations:

- Shor's algorithm
- Grover's algorithm

Thank you!

[^0]: 2011-2014 PhD studies
 University of Milano

