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Introduction

A useful Quantum Computer needs to be:

« Universal and General Purpose: not limited to a single class of problems

» Accurate: probability of error on the output can be arbitrarily small

» Scalable: resource requirements do not grow exponentially in the size of
target error probability of the computation

Building Quantum Computers is challenging:
* Quantum information is inherently fragile

* Not a pure engineering problem: understanding
the underlying physics still matters a lot!

» Current devices are noisy. We don't expect
gquantum devices to be as good as classical
transistors for information processing
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Fault-Tolerant quantum computers aim to achieve a useful quantum computer
given imperfect devices underneath

* Using encoded quantum data will require O(1000) more physical qubits
» The small devices available today serve as demonstrators for theoretical
concepts (e.g., error correction) applicable to more reliable platforms
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Fault-tolerant classical computing

A fault-tolerant computing protocol maintains general purpose computations
efficiently in the presence of faults during the computation

Computational Model: circuits in which each gate has exactly one output

Noise Model: ideal gates followed by a bit flip with probability p

Goal: approximate the ideal circuit to precision ¢ using faulty
gates

Approach: encode the data and process it with encoded gates

which suppress the spread of errors
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The classical threshold theorem

A g-gate ideal circuit can be simulated to precision € by an
O(g log (g/€))-gate faulty circuit

von Neumann,

Automata Studies. (AM-34), 1956

* Aslong as gate error p < p_, the accuracy threshold for classical computation
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The quantum threshold theorem

A quantum circuit is fault-tolerant against t failures if failures in t elements results
in at most t errors per code block (group of qubits corrected together)

There exists a physical error probability p_ below which an arbitrary quantum
computation can be performed efficiently

« 2-input gate accuracy threshold [0802.1464]
* Atk levels of encoding, the effective error rate P _scales as p_ (p/p_)*.
For a computation of length N, we need log (log N) levels of encoding
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https://arxiv.org/abs/0802.1464

How can we achieve fault tolerant QC?

A series of problems seem to prevent the possibility of fault-tolerant quantum
computing:

* The no-cloning theorem
» The collapse of the state after measurement
» Unitary operations are continuous (not discrete)

Despite these problems, quantum error correction is possible (I'll give just one
example, you'll see more details in Jeanette’s lecture tomorrow)

« We can use methods from classical error correction
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Classical bit flips

We can use redundancy to code the information
0 — 000
1 — 111

We use majority voting to “correct” errors
000, 001, 010, 100 — 000
111, 110, 101, 011 — 111

In this way, we can correct errors that affect only a single bit
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Quantum bit flips

We can extend the previous idea to the quantum domain

We use three qubits to code one
|0) — |000)
1) — [111)
By linearity
a|0) + B [1) — a |000) + B [111)

It does NOT violate the no-cloning theorem

The circuit for encoding is simple |¢> i I
0) —©
0) D
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Detecting and correcting bit flips

We can detect qubit flips without measuring them by using additional qubits
|000),[111) — |00) |001) ,{110) — |01)
|010),[101) — [10) 1100),|011) — [11)
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Detecting and correcting bit flips

We can detect qubit flips without measuring them by using additional qubits

|000),[111) — |00) |001),|110) — |01)
|010),|101) — |10) |100),|011) — [11)
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Detecting and correcting bit flips

We can detect qubit flips without measuring them by using additional qubits

|000),|111) — |00) |001) ,{110) — |01)
|010),[101) — [10) 1100),|011) — [11)
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Detecting and correcting bit flips

We can detect qubit flips without measuring them by using additional qubits

|000),|111) — |00) |001) ,{110) — |01)
010),[101) — |10) 1100),|011) — [11)
) ° ° °
0) \J% Error ®
0) &b .
0) O—D
0) D
We can measure the additional qubits and apply an error correction operation:
|00> = all good |01> = invert the third qubit
|10> = invert the second qubit |11> = invert the first qubit
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QFT != Quantum Field Theory

Now, let’'s assume we had an ideal quantum computer. What could we do with it?

The Quantum Fourier Transform (QFT) is widely used in quantum computing

A general quantum state |¢) on n qubits can be written
2] N-1

|()0>:Zaj|]>nzzaj|]>n for N = 2"

j=0 j=0
There are N amplitudes a, corresponding to the N standard basis kets |j)

2
For a fixed |¢), we get a complex-valued function where aQ)—a with 1 = Z |aJ|

The quantum Fourier Transform of |¢) is

N-1 N-1 N- 5 i
. . : Jjk BT
QFT,: [} = D ajli)n— D bjlida with bj = —= E arw’ and w=eN

=0 =0 \/_
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In matrix form

1 1 1 1 1
1 w w? w wN=1
T P w* ” W2 (N-1)
1 3 6 3(N-1)
QFTn =11 w w w w
VN
1 oN-1 Q2(N-1) 3(N-1) .. (N-D(N-1)
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In matrix form (after some massaging)

1 1 1 1 1
1 w w? w3 w1
1 w? w? w® w2
1 3 6 9 N-3
QFT,, = — 1 w w w w
VN
1 wN-1 HN-2 HN-3 w

Interesting fact: for n = 1

W= %E (—11)1] AL -

but this is not true in general!
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QFT circuit

|7j1)|HHRa [~ —{Rn-1Rn

|j2> l T H_..'—ILI—Q'—RII—I'_"'

|jn—1> * oo HHR>

I]Tl) < ° l H

The circuit in the figure implements the QFT

« The R gates in the circuit are what we call RZ(21T/2k)
 The number of gates is quadratic in m, an exponential speed-up over the
classical case (FFT)

Two properties of the QFT will be very useful in a moment:

« Shift-invariance (up to an unobservable phase)
* QFT transforms sequences with period r into sequences with period M/r
(where M = 2™M)
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Introduction

Shor’s algorithm is, probably, the
most famous quantum algorithm

- It finds a factor of a n-bit 0uantum comPUters

integer in time

O(n(log n)(log log n)) Destroy Internet Security

« The best classical algorithm
that we know of for the same
task needs time O(ec"3 (l0gnj2/3 )

©

« Dramatic consequences for
current cryptography (RSA)
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https://www.youtube.com/@MinutePhysics

How does RSA work?

RSA is a security protocol to allow others to send you secure communications.

* You publish a public key used to encrypt these messages intended for you.
Anyone who has access to the key can use it.

« There is an additional key, your private key. You and only you have it. With it
you can decrypt and read the encrypted messages.

Public key: a pair of numbers (e, n), with n an integer (product of two primes)

Private key: a pair of numbers (d, n), with the same n as the public key
d __
(m°)” = m(mod n)

Knowing e and n, or even m, it can be extremely difficult to find d
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Example (from wikipedia)
1. Choose two distinct prime numbers (p=61 and q=53), n = pq = 3233.
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Example (from wikipedia)

1. Choose two distinct prime numbers (p=61 and q=53), n = pq = 3233.
2. Compute A(n) =lcm(p-1,q- 1) =1lcm(60, 52) = 780
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Example (from wikipedia)

1. Choose two distinct prime numbers (p=61 and q=53), n = pq = 3233.
2. Compute A(n) =lcm(p-1,q- 1) =1lcm(60, 52) = 780
3. Choose any number 1 < e < 780 that is coprime to 780.

If we choose a prime number, we only have to check it is not a divisor of 780.
Let e=17.
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Example (from wikipedia)

1. Choose two distinct prime numbers (p=61 and q=53), n = pq = 3233.
2. Compute A(n) =lcm(p-1,q- 1) =1lcm(60, 52) = 780
3. Choose any number 1 < e < 780 that is coprime to 780.

If we choose a prime number, we only have to check it is not a divisor of 780.
Let e=17.

4. Compute d, the modular multiplicative inverse of e (mod A(n)), d = 413

1= (17x413) mod 780
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Example (from wikipedia)

1. Choose two distinct prime numbers (p=61 and q=53), n = pq = 3233.
2. Compute A(n) =lcm(p-1,q- 1) =1lcm(60, 52) = 780
3. Choose any number 1 < e < 780 that is coprime to 780.

If we choose a prime number, we only have to check it is not a divisor of 780.
Let e=17.

4. Compute d, the modular multiplicative inverse of e (mod A(n)), d =413
1=(17%x413) mod 780
The public key is (n = 3233, e = 17). The encryption function is
c(m) =m® mod n = m'” mod 3233
The private key is (n = 3233, d = 413). The decryption function is

m(c) = ¢ mod n = ¢*'® mod 3233
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Example (from wikipedia)

1. Choose two distinct prime numbers (p=61 and q=53), n = pq = 3233.

2. Compute A(n) =lcm(p-1,q- 1) =1lcm(60, 52) = 780

3. Choose any number 1 < e < 780 that is coprime to 780.
If we choose a prime number, we only have to check it is not a divisor of 780.
Let e=17.

4. Compute d, the modular multiplicative inverse of e (mod A(n)), d =413
1=(17%x413) mod 780
The public key is (n = 3233, e = 17). The encryption function is
c(m) =m® mod n = m'” mod 3233
The private key is (n = 3233, d = 413). The decryption function is
m(c) = ¢ mod n = ¢*'® mod 3233

For the message m = 65: ¢(m) = 65" mod 3233 = 2790
m(c) = 2790*'3 mod 3233 = 65

What if we could compute your private key from the public key?
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The algorithm

o s wh =

Given N, check that N is not a prime or power of a prime. If it is, stop.
Choose 1 <a < N at random

If b = gcd(a,N) > 1, output b and stop

Find the order of a mod N (r >0 such that a" =1 mod N)

If ris odd, goto 2

Compute

x=a" +1 mod N y=a"?-1modN

lfx=0,goto2. Ify=0,taker=r/2 and go to 5.
Compute p = gcd(x,N) and g = gcd(y,N). At least one of them will be a
non-trivial factor of N

Every step, apart from 4 can be carried out efficiently on a classical
computer. For step 4, there exists a circuit with a number of gates which is
polynomial in n (the number of bits of N)
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The quantum order-finding routine
0) —H . A

QFT},

1) —F° U2 —ua — - —ua™" A
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The quantum order-finding routine
~

"1 ] -

QFT},
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The quantum order-finding routine

N\
H

\

QFT!,
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The quantum order-finding routine
/" \
H \\ - ° A=

QFT!,

3
—ﬁz ) [c)

xeC
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Example

Ifa=2,N=5 m=4, we would have
174 (10 [1) + 1) [2) + [2) [4) + [3) [3) + [4) [1) + ... +]15) |3))
and when we measure we could obtain, for instance

1/2.(|1) 12) + 5) [2) + 19) [2) + [13) 2))

Note that the values of the first register are exactly 4 units apart and that

2*=1mod 5

In general, we will obtain values that are r units apart, where a" =1 mod N
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The quantum order-finding routine

0) — H

0) — H s

0) — H T

1) —#* Ua? Ua [—

Properties of the QFT:

» Shift-invariance

* QFT transforms sequences with
period r into sequences with period
M/r (where M = 2™)
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Quantum phase estimation

Superposition Controlled U Operations Measurement
0) — & ” . Z
QFT,.!
0) H . e A
0) H [ e A
Image: modified

m—1

from Wikipedia

[¥) H U?’ v¥ — - — U?

Suppose we are given a unitary operation U and one of its eigenvectors |p)

«  We know that there exists 8 € [0, 1) such that U |p) = >™®

 We can estimate 6 with the circuit shown above
2m—1

The circuit before the QFT will prepare % > e k)

k=0
By using the inverse QFT we can measure j = 2™0
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Shor’s algorithm case

The circuit used in Shor’s algorithm is a case of quantum phase estimation

DESY.

The (unitary) operation of modular multiplication by a has eigenvalues

K
i k=0,...,r—1

where r is the period of a

It is not easy to prepare one of the eigenvectors |y, ) of the unitary operation

But we use the factthat |1) = —= ) _ |1)

We will get a random integer of the form k/r 2™ for randomk =0, 1, ..., r-1
We can then re-run the quantum subroutine several times to extract r

Internet security is now destroyed
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Grover’s algorithm

(time-dependent
bonus / might skip)



Introduction

Grover’s algorithm is used to solve search
problems

* Imagine we have an unsorted list of N

elements

* One of them verifies a certain condition
and we want to find it e s

* Any classical algorithm requires O(N)
queries to the list in the worst case

» Grover’s algorithm can find the
element with O(VN) queries
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The oracle function

We are given a circuit (an oracle) that implements a one-bit boolean function
An oracle is treated as a black box, a circuit whose interior we cannot know

« This circuit computes, in a reversible way, a certain function f
* For the computation to be reversible, it uses as many inputs as outputs and
“‘writes the result” with an XOR

The oracle computes the function f: {0, 1}" = {0, 1} (with N =2")

* The element we want to find is the one that verifies f(x) = 1

X\ "o, (¥

y) — — ly®f(x))
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The strategy

The quantum search algorithm is based on the idea of inversion about the mean

Original Amplitudes Negate Amplitude

el

Average of all Amplitudes Flip all Amplitudes around Avg

Image credits: quantumcomputing.stackexchange.com
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Using the oracle to negate the amplitude

We create the state [0 ... 0 )| 1)

We use Hadamard gates to create the superposition

> %) (10) = 1))

xe{0,1}"

v

We apply the oracle, getting

> \/21,? ) (0@ f(x)) — |1 @ f(x))) =
x€{0,1}"
f(x)
> b (0) - m)
x€{0,1}7
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[ 2
] H I H X L 4 X H |+ - —/74:
I I
0)*"{ — H o, (X e —{xHH- e
f I I
—H HHAX A ZA XA H - — A
LT = = i s s a2 e =
1) —H _
W_)
Oracle call Grover’s diffusion
(a reflection) operator

(also a reflection)

Grover’s algorithm performs O(VN) iterations, each one consisting of two steps

» The oracle “marks” those states that verify the condition
» The diffusion operator “amplifies” the amplitudes of the marked states
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Reflection x Reflection = Rotation

If we denote by |x,) the marked element,
the initial state of the upper n qubits is

N— 1 1
- X0) + 1/ |x1)
N/ N N
|9") —— —
) cos 6 sin 6

If D is the diffusion operator and G = DO;

Li« G acts on the 2-dimensional space
spawned by [x,) and |x,) as a rotation
of angle 26

[¥) After m iterations:

cos (2m+1)8 |xp) + sin (2m+ 1)0 | xq)

In order to obtain [x,) with high probability
when we measure we need

™
(2m+1)0 = 5
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The solution

When we measure, we will obtain x such that f(x) = 1 depending on:

* The number m of iterations
» The fraction of values x that satisfy the condition

If we perform too many iterations, we can overshoot and not find a marked
element

It can be shown that no other quantum algorithm can obtain more than a quadratic
speed-up over over classical algorithms in the same setting
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Conclusions

QUANTUM

THIS WAS REALLY
HARD TO FABRICATE
AND DOESN'T HELP

ALGORITHMS FROM
WIKIPEDIA: NOW
WITH QUANTUM

WE'VE HAD A HERO
DEVICE COLD FOR
FOUR YEARS: RECENT

STILL NO

SIMULATING OUR
SYSTEM WITH
OUR SYSTEM

WE'VE SOLVED QC
WITH OUR NEW

PAPER

INCREMENTAL PROGRESS:
A BREAKTHROUGH FOR
SCALABLE QC

RADIATION ARE BAD

JOSEPHSON
JUNCTIONS CAN DO
SO MANY THINGS

LITERAL MAGIC WITH
IMPOSSIBLE INDUCTORS




Summary

Discussed the concept of fault-tolerant
quantum computing

« Gave one example of error correction

Discussed some of the most famous
quantum algorithms

* Quantum Fourier Transform
» Shor’s algorithm
* (maybe) Grover’s algorithm

Hands-on demonstrations:

« Shor's algorithm
* Grover's algorithm
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https://colab.research.google.com/drive/1d9YpIjCnDfEjB8I7JlJdTjWPMA8Mq92W?usp=sharing
https://colab.research.google.com/drive/1OeEydYz7F80KZq1niEtLrwC4DgyPGoqu?usp=sharing

Thank you!



