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Introduction
A useful Quantum Computer needs to be:

• Universal and General Purpose: not limited to a single class of problems
• Accurate: probability of error on the output can be arbitrarily small
• Scalable: resource requirements do not grow exponentially in the size of 

target error probability of the computation

Building Quantum Computers is challenging:

• Quantum information is inherently fragile

• Not a pure engineering problem: understanding
the underlying physics still matters a lot!

• Current devices are noisy. We don't expect 
quantum devices to be as good as classical 
transistors for information processing
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Where are we?

Fault-Tolerant quantum computers aim to achieve a useful quantum computer 
given imperfect devices underneath

• Using encoded quantum data will require O(1000) more physical qubits
• The small devices available today serve as demonstrators for theoretical 

concepts (e.g., error correction) applicable to more reliable platforms

?
Sketch: T. S. Metodi
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Fault-tolerant classical computing
A fault-tolerant computing protocol maintains general purpose computations 
efficiently in the presence of faults during the computation

Computational Model: circuits in which each gate has exactly one output

Noise Model: ideal gates followed by a bit flip with probability p

Goal: approximate the ideal circuit to precision ε using faulty 
gates

Approach: encode the data and process it with encoded gates 
which suppress the spread of errors
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The classical threshold theorem

A g-gate ideal circuit can be simulated to precision ε by an 
O(g log (g/ε))-gate faulty circuit

von Neumann, 

Automata Studies. (AM-34), 1956

• As long as gate error p < pc, the accuracy threshold for classical computation
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The quantum threshold theorem

A quantum circuit is fault-tolerant against t failures if failures in t elements results 
in at most t errors per code block (group of qubits corrected together)

There exists a physical error probability pc below which an arbitrary quantum 
computation can be performed efficiently

• 2-input gate accuracy threshold [0802.1464]
• At k levels of encoding, the effective error rate PL scales as pc (p/pc)

2k. 
For a computation of length N, we need log (log N) levels of encoding

https://arxiv.org/abs/0802.1464
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How can we achieve fault tolerant QC?
A series of problems seem to prevent the possibility of fault-tolerant quantum 
computing:

• The no-cloning theorem
• The collapse of the state after measurement
• Unitary operations are continuous (not discrete)

Despite these problems, quantum error correction is possible (I’ll give just one 
example, you’ll see more details in Jeanette’s lecture tomorrow)

• We can use methods from classical error correction
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Classical bit flips

We can use redundancy to code the information

0 → 000

1 → 111

We use majority voting to “correct” errors

000, 001, 010, 100 → 000 

111, 110, 101, 011 → 111

In this way, we can correct errors that affect only a single bit
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Quantum bit flips
We can extend the previous idea to the quantum domain

We use three qubits to code one

|0⟩ → |000⟩

|1⟩ → |111⟩

By linearity

α |0⟩ + β |1⟩ → α |000⟩ + β |111⟩

It does NOT violate the no-cloning theorem

The circuit for encoding is simple
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Detecting and correcting bit flips
We can detect qubit flips without measuring them by using additional qubits
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Detecting and correcting bit flips
We can detect qubit flips without measuring them by using additional qubits

We can measure the additional qubits and apply an error correction operation:

|00> =  all good |01> = invert the third qubit

|10> =  invert the second qubit |11> = invert the first qubit



Quantum 
Fourier
Transform
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QFT != Quantum Field Theory
Now, let’s assume we had an ideal quantum computer. What could we do with it?

The Quantum Fourier Transform (QFT) is widely used in quantum computing

A general quantum state |𝜑⟩ on 𝑛 qubits can be written

for 𝑁 = 2𝑛

There are 𝑁 amplitudes 𝑎j corresponding to the 𝑁 standard basis kets |𝑗⟩

For a fixed |𝜑⟩, we get a complex-valued function where 𝑎(𝑗)=𝑎j, with 

The quantum Fourier Transform of |𝜑⟩ is

with   and 
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In matrix form
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In matrix form (after some massaging)

Interesting fact: for n = 1

but this is not true in general!
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QFT circuit

The circuit in the figure implements the QFT

• The R gates in the circuit are what we call RZ(2π/2k)
• The number of gates is quadratic in m, an exponential speed-up over the 

classical case (FFT)

Two properties of the QFT will be very useful in a moment:

• Shift-invariance (up to an unobservable phase)
• QFT transforms sequences with period r into sequences with period M/r 

(where M = 2m)



Shor’s algorithm
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Introduction

Shor’s algorithm is, probably, the 
most famous quantum algorithm

• It finds a factor of a n-bit 
integer in time 
O(n2(log n)(log log n))

• The best classical algorithm 
that we know of for the same 
task needs time O(ecn/3 (log n)2/3 )

• Dramatic consequences for 
current cryptography (RSA) Drawing taken from: @MinutePhysics 

https://www.youtube.com/@MinutePhysics
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How does RSA work?

RSA is a security protocol to allow others to send you secure communications. 

• You publish a public key used to encrypt these messages intended for you. 
Anyone who has access to the key can use it.

• There is an additional key, your private key. You and only you have it. With it 
you can decrypt and read the encrypted messages.

Public key: a pair of numbers (𝑒, 𝑛), with 𝑛 an integer (product of two primes)

Private key: a pair of numbers (𝑑, 𝑛), with the same 𝑛 as the public key

Knowing e and n, or even m, it can be extremely difficult to find d
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Example (from wikipedia)
1. Choose two distinct prime numbers (p=61 and q=53), n = pq = 3233.
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Example (from wikipedia)
1. Choose two distinct prime numbers (p=61 and q=53), n = pq = 3233.
2. Compute λ(n) = lcm(p − 1, q − 1) = lcm(60, 52) = 780 
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Example (from wikipedia)
1. Choose two distinct prime numbers (p=61 and q=53), n = pq = 3233.
2. Compute λ(n) = lcm(p − 1, q − 1) = lcm(60, 52) = 780 
3. Choose any number 1 < e < 780 that is coprime to 780. 

If we choose a prime number, we only have to check it is not a divisor of 780.
Let e=17.
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Example (from wikipedia)
1. Choose two distinct prime numbers (p=61 and q=53), n = pq = 3233.
2. Compute λ(n) = lcm(p − 1, q − 1) = lcm(60, 52) = 780 
3. Choose any number 1 < e < 780 that is coprime to 780. 

If we choose a prime number, we only have to check it is not a divisor of 780.
Let e=17.

4. Compute d, the modular multiplicative inverse of e (mod λ(n)), d = 413

1 = (17×413) mod 780
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Example (from wikipedia)
1. Choose two distinct prime numbers (p=61 and q=53), n = pq = 3233.
2. Compute λ(n) = lcm(p − 1, q − 1) = lcm(60, 52) = 780 
3. Choose any number 1 < e < 780 that is coprime to 780. 

If we choose a prime number, we only have to check it is not a divisor of 780.
Let e=17.

4. Compute d, the modular multiplicative inverse of e (mod λ(n)), d = 413

1 = (17×413) mod 780

The public key is (n = 3233, e = 17). The encryption function is 

c(m) =me mod n = m17 mod 3233

The private key is (n = 3233, d = 413). The decryption function is

m(c) = cd mod n = c413 mod 3233
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Example (from wikipedia)
1. Choose two distinct prime numbers (p=61 and q=53), n = pq = 3233.
2. Compute λ(n) = lcm(p − 1, q − 1) = lcm(60, 52) = 780 
3. Choose any number 1 < e < 780 that is coprime to 780. 

If we choose a prime number, we only have to check it is not a divisor of 780.
Let e=17.

4. Compute d, the modular multiplicative inverse of e (mod λ(n)), d = 413

1 = (17×413) mod 780

The public key is (n = 3233, e = 17). The encryption function is 

c(m) =me mod n = m17 mod 3233

The private key is (n = 3233, d = 413). The decryption function is

m(c) = cd mod n = c413 mod 3233

For the message m = 65: c(m) = 6517 mod 3233 = 2790
m(c) = 2790413 mod 3233 = 65

What if we could compute your private key from the public key?
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The algorithm
1. Given N, check that N is not a prime or power of a prime. If it is, stop.
2. Choose 1 < a < N at random
3. If b = gcd(a,N) > 1, output b and stop
4. Find the order of a mod N (r >0 such that ar ≡1 mod N)
5. If r is odd, go to 2
6. Compute

x = ar/2 +1 mod N y = ar/2 − 1 mod N

7. If x = 0, go to 2. If y = 0, take r = r/2 and go to 5.
8. Compute p = gcd(x,N) and q = gcd(y,N). At least one of them will be a 

non-trivial factor of N

Every step, apart from 4 can be carried out efficiently on a classical 
computer. For step 4, there exists a circuit with a number of gates which is 
polynomial in n (the number of bits of N)
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The quantum order-finding routine
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The quantum order-finding routine
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Example

If a = 2, N = 5, m = 4, we would have

1/4 (|0⟩ |1⟩ + |1⟩ |2⟩ + |2⟩ |4⟩ + |3⟩ |3⟩ + |4⟩ |1⟩ + . . . + |15⟩ |3⟩)

and when we measure we could obtain, for instance 

1/2 (|1⟩ |2⟩ + |5⟩ |2⟩ + |9⟩ |2⟩ + |13⟩ |2⟩)

Note that the values of the first register are exactly 4 units apart and that 

24 = 1 mod 5

In general, we will obtain values that are r units apart, where ar =1 mod N
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The quantum order-finding routine

Properties of the QFT:

• Shift-invariance
• QFT transforms sequences with 

period r into sequences with period 
M/r (where M = 2m)
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Quantum phase estimation

Suppose we are given a unitary operation U and one of its eigenvectors |ψ⟩

• We know that there exists θ ∈ [0, 1) such that U |ψ⟩ = e2πiθ

• We can estimate θ with the circuit shown above

The circuit before the QFT will prepare 

By using the inverse QFT we can measure j ≈ 2mθ

Image: modified 
from Wikipedia
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Shor’s algorithm case
The circuit used in Shor’s algorithm is a case of quantum phase estimation

• The (unitary) operation of modular multiplication by a has eigenvalues

where r is the period of a

• It is not easy to prepare one of the eigenvectors |ψk⟩ of the unitary operation

• But we use the fact that

• We will get a random integer of the form k/r 22m for random k = 0, 1, …, r-1

• We can then re-run the quantum subroutine several times to extract r

• Internet security is now destroyed



Grover’s algorithm

(time-dependent 
bonus / might skip)
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Introduction

Grover’s algorithm is used to solve search 
problems

• Imagine we have an unsorted list of N 
elements

• One of them verifies a certain condition 
and we want to find it

• Any classical algorithm requires O(N) 
queries to the list in the worst case 

• Grover’s algorithm can find the 
element with O(√N) queries
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The oracle function
We are given a circuit (an oracle) that implements a one-bit boolean function 

An oracle is treated as a black box, a circuit whose interior we cannot know

• This circuit computes, in a reversible way, a certain function f
• For the computation to be reversible, it uses as many inputs as outputs and 

“writes the result” with an XOR

The oracle computes the function f : {0, 1}n ⇒ {0, 1} (with N = 2n)

• The element we want to find is the one that verifies f(x) = 1
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The strategy
The quantum search algorithm is based on the idea of inversion about the mean
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Using the oracle to negate the amplitude

We create the state | 0 … 0 ⟩ | 1 ⟩

We use Hadamard gates to create the superposition

We apply the oracle, getting
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Oracle call
(a reflection)

Grover’s diffusion 
operator

(also a reflection)

Grover’s algorithm

Grover’s algorithm performs O(√N) iterations, each one consisting of two steps

• The oracle “marks” those states that verify the condition
• The diffusion operator “amplifies” the amplitudes of the marked states
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Reflection x Reflection = Rotation
If we denote by |x1⟩ the marked element, 
the initial state of the upper n qubits is

If D is the diffusion operator and G = DOf

• G acts on the 2-dimensional space 
spawned by |x0⟩ and |x1⟩ as a rotation 
of angle 2θ

After m iterations:

In order to obtain |x1⟩ with high probability 
when we measure we need
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The solution

When we measure, we will obtain x such that f(x) = 1 depending on:

• The number m of iterations
• The fraction of values x that satisfy the condition

If we perform too many iterations, we can overshoot and not find a marked 
element

It can be shown that no other quantum algorithm can obtain more than a quadratic 
speed-up over over classical algorithms in the same setting



Conclusions
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Summary

Discussed the concept of fault-tolerant 
quantum computing 

• Gave one example of error correction

Discussed some of the most famous 
quantum algorithms

• Quantum Fourier Transform
• Shor’s algorithm
• (maybe) Grover’s algorithm

Hands-on demonstrations:

• Shor's algorithm
• Grover's algorithm  

https://colab.research.google.com/drive/1d9YpIjCnDfEjB8I7JlJdTjWPMA8Mq92W?usp=sharing
https://colab.research.google.com/drive/1OeEydYz7F80KZq1niEtLrwC4DgyPGoqu?usp=sharing


Thank you!


