Quantum computing and quantum machine learning: NISQ

PD Dr. habil. Jeanette Miriam Lorenz Fraunhofer Institute for Cognitive Systems IKS & **LMU Munich** 09.08.2023

Fraunhofer Institute for Cognitive Systems IKS

MAXIMILIANS UNIVERSITÄT

NISQ computing

- Introduction to NISQ & variational algorithms 1.
- 2. Noise & error mitigation
 - Noise types **a**)
 - How severe is the problem? b)
 - **Mitigation schemes c)**

Continued by an introduction to solving optimization problems with quantum computers

IKS

Noisy Intermediate-Scale Quantum (NISQ) Computing

Fault-tolerant quantum computing requires too many qubits and gates for presently available quantum computers [Frank Leymann and Johanna Barzen 2020 Quantum Sci. Technol. 5 044007]

Algorithms typically assume so-called **logical** qubits, instead available: **physical** qubits

Physical qubits are affected by various errors and have a certain **decoherence** time

Gate operations are equally affected by errors, as well as the measurements

To realize 1 logical qubit, many 10 – 1000 physical qubits required

How to design algorithms in the NISQ era?

Situation:

- Limited number of qubits
- Limited conectivity
- Various noise sources, and no error correction (only error mitigation)

Requirements on the QAlg:

- Shallow circuits: limited number of qubits + limited depth
- Hybrid algorithms: Calculations of limited size, but high complexity on a quantum computer with a close iteration with a classical computer or a High Performance Computing (HPC)-system (for e.g., updates of parameters)
- Close integration with classical computers!

What is required to get a practical quantum advantage?

What is a practical quantum advantage and where do we expect it?

Quantum advantage shown in academic examples – see Google Sycamore – or on the algorithmic side (e.g. Shor's algorithm, Grover's algorithm)

For a practical quantum advantage required:

- Ability to compute ,real-life' problems, i.e. working on potentially messy and/or large/complicated datasets or tasks
 - Limitations by present size of QPUs and quality.
 - Noise, connectivity between qubits....
 - Data encoding into QPU
- Identification of areas where QC useful + definition of appropriate metrics
 - Simulation, optimization, quantum machine learning

Sources:

Preskill, 2018, https://arxiv.org/abs/1801.00862

Combarro, 2020, A Practical Introduction to Quantum Computing: From Qubits to Quantum Machine Learning and Beyond

IBM Roadmap 2021, https://research.ibm.com/blog/quantum-development-roadmap

Example: IBM roadmap

The general working of variational quantum algorithms

[K. Bharti et al., Noisy intermediate-scale quantum (NISQ) algorithms, https://arxiv.org/abs/2101.08448]

Components of variational algorithms

- **Objective function**: Encoding the problem to be solved
- **Cost function**: Function be minimized (by a variational approach)
- Parametrized quantum circuit (PQC):
 - With tunable parameters θ to minimize the objective
 - Mesurement: Measurement + basis transformation; input to the cost function
- Classical optimizer

Noise types affecting quantum computers

Different sources of noise affect the calculations on QC:

Coherent noise

(reversible, e.g. by miscalibrated gates)

Incoherent noise:

- Readout noise/ Bit flips
 (Flips the result of the measurement)
- Depolarizing noise

(a qubit state loses its information due to interactions with the environment)

- Both phase and superposition lost
- Amplitude and phase damping noise (Energy dissipation to the environment)
- Phase flip (Change of the phase of the qubit)
- Shot noise (stochastic, due to the finite number of states)

Phase flip

Cosmic rays and radiation leading to catastrophic bursts

[M. McEwan et al., Resolving catastrophic error bursts from cosmic rays in large arrays of superconducting qubits, Nature Physics 18, 107-111 (Jan 2022)]

[https://letstalkscience.ca/educational-

Production of high-energetic muons and gamma rays by cosmic rays

 μ, γ from cosmic rays (+ other radiation) may strike superconducting QC chip

Interaction with the matter of the superconducting QC chip:

- Deposition of the energy 100 keV 1 MeV and therefore >> energy scale of the qubits ~ 25 μeV
- μ , γ inonize substract
- Production of phonons with long lifetime
- Phonons break up Cooper pairs
- + Quasiparticles may tunnel Josephson junction -> resulting in a potential avalanche of quasiparticles
- Result: Chip-wide suppression of qubit coherence
 -> Failure

Experimental setup

[M. McEwan et al., Resolving catastrophic error bursts from cosmic rays in large arrays of superconducting qubits, Nature Physics 18, 107-111 (Jan 2022)]

Experiments executed on the Google Sycamore Processor, using 26 qubits with the couplings between the qubits turned off.

Rapid Repetitive Correlated Sampling

- All qubits prepared in state |1>
- Allowed to be idle for 1 μs, then measurement
- Cycles repeated at intervals of 100 μs
- Counts additional errors above decoherence and readout fidelities that are expected.

Results

Different datasets taken and analyzed.

Approx. 1 event every 10s

Impact of cosmic rays clearly visible comparing to situation without an event present

Impact of cosmic rays particularly problematic for QAlgs running a couple of hours

Mitigation techniques from astroparticle physics detectors may be helpful in mitigating errors [M. McEwan et al., Resolving catastrophic error bursts from cosmic rays in large arrays of superconducting qubits, Nature Physics 18, 107-111 (Jan 2022)]

[G. Gonzalez-Garcia et al., Error propagation in NISQ devices for solving classical optimization problems, PRX Quantum 3, 040326]

Impact of noise on the QAOA algorithm

Noise may impact the trainability of variational algorithms + influence the result quality

Which circuit length and depth is acceptable to still obtain good results?

Theoretical analysis by G. Gonzalez-Garcia et al.:

- Build a model of random circuits
- Start with product states, apply entanglement, disentangle to another product state, measure

Finding: The noise propagates quickly through the circuit

Findings

Which noise level p is acceptable to obtain a solution to QAOA within a certain multiplicative error of its true solution?

Allowed circuit depths depending on the chip architecture (1D or 2D):

- Maximum circuit depth allowed (n: system size):
 - 1D: $\max(O(p^{-\frac{1}{2}}), O(1/(pn)))$
 - 2D: $\max(O\left(p^{-\frac{1}{3}}\right), O(1/(pn)))$

As soon as half of the qubits depolarized, the average quality of the solution is worse than the quality of the classical solution

A good solution requires a computation ~without errors -> an error rate below $p \sim 1/(nD)$ is required (D is the depth of the circuit)

[G. Gonzalez-Garcia et al., Error propagation in NISQ devices for solving classical optimization problems, PRX Quantum 3, 040326]

Error mitigation

Why we need it + definition

Noise presents a significant limitation to what we can currently calculate on QC

How can we solve this problem?

- Alternative (shorter and small) algorithms (quantum advantage unclear)
- Quantum error correction:
 - Correction schemes implemented on QC; results in more physical qubits required
 - Various ideas exist
 - Threshold theorem (Aharonov + Ben-Or 1997 + Kitaev 1997):
 - If errors can be reduced below a certain threshold, circuits of arbitrary length possible despite noisy hardware
- Quantum error mitigation:
 - Classical post-processing of algorithms to reduce the noiseinduced bias
 - Only effective for an ensemble of circuits, the individual result of a circuit evaluation can be worse!

[https://research.ibm.com/blog/gammabar-forquantum-advantage]

Impact of quantum error mitigation

In general quantified by the impact on the expectation value and the variance of an operator

- The ideal result would be $tr(0\rho_0)$
- Instead of the operator O we rather get the estimator ô
- Calculate:
 - Mean square error: $MSE[\hat{O}] = \mathbb{E}\left[\left(\hat{O} tr(O\rho_0)\right)^2\right] = Bias[\hat{O}]^2 + Var[\hat{O}]$
 - Variance: $\operatorname{Var}[\hat{O}] = \mathbb{E}[\hat{O}] \mathbb{E}[\hat{O}]^2$

Noise shifts the mean with respect to ideal value + broadens the variance.

Error mitigation reduces the shifts, but broadens the variance further. (Reason: the error mitigation essentially constructs a more complicated estimator)

[Z. Cal et al, Quantum Error Mitigation, arXiv:2210.00921 [quant-ph]]

Example for an error mitigation technique

Zero-noise extrapolation

Assume that a circuit has a fault rate of λ for a obtaining a state ho_{λ}

This means $tr(O \rho_{\lambda})$ is a function of λ

Idea of the zero-noise extrapolation:

- Measure $tr(O\rho_{\lambda})$ at the smallest circuit fault rate possible
- Measure $tr(O\rho_{\lambda})$ at increasing circuit fault rates (boosted error rates)
- Fit $tr(O\rho_{\lambda})$ as function of λ
- (Different fit functions may be applicable depending on the situation)
- Extrapolate to $\lambda = 0$

[Z. Cal et al, Quantum Error Mitigation, arXiv:2210.00921 [quant-ph]]

Contact

PD Dr. habil. Jeanette Miriam Lorenz Head of Department Quantum-enhanced AI Tel. +49 89 547088-334 Jeanette.miriam.lorenz@iks.fraunhofer.de

Fraunhofer IKS Hansastr. 32 80686 München www.iks.fraunhofer.de

Fraunhofer Institute for Cognitive

IKS

