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NISQ computing

1. Introduction to NISQ & variational algorithms

2. Noise & error mitigation
a) Noise types
b) How severe is the problem?
c¢) Mitigation schemes

Continued by an introduction to solving optimization problems with
quantum computers
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Noisy Intermediate-Scale Quantum (NISQ) Computing

. . [Frank Levmann and lohanna
FaUIt'tO|erant quantum Computlng reqUIreS tOO many Barzen 2020 Quantum Sci.
. . Technal. 5 044007
qubits and gates for presently available quantum
computers
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How to design algorithms in the NISQ era?

Situation:

= Limited number of qubits

= Limited conectivity

= Various noise sources, and no error correction (only error mitigation)

Requirements on the QAlg:

= Shallow circuits: limited number of qubits + limited depth

= Hybrid algorithms: Calculations of limited size, but high
complexity on a quantum computer with a close iteration with a
classical computer or a High Performance Computing (HPC)-system
(for e.g., updates of parameters)

= Close integration with classical computers!
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What is required to get a practical quantum advantage?

What is a practical quantum advantage and where do
we expect it?

Quantum advantage shown in academic examples — see Google
Sycamore — or on the algorithmic side (e.g. Shor’s algorithm, Grover’s
algorithm)

For a practical quantum advantage required:
= Ability to compute ,real-life’ problems, i.e. working on potentially
messy and/or large/complicated datasets or tasks
Limitations by present size of QPUs and quality.
Noise, connectivity between qubits....
Data encoding into QPU

= |dentification of areas where QC useful + definition of appropriate

metrics
Simulation, optimization, quantum machine learning
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Sources:

Preskill, 2018, https://arxiv.org/abs/1801.00862

Combarro, 2020, A Practical Introduction to Quantum Computing: From Qubits to Quantum Machine Learning and
Beyond

IBM Roadmap 2021, https:/research.ibm.com/blog/quantum-development-roadmap
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Example: IBM roadmap
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Quantum algorithm and application modules
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The general working of variational quantum algorithms
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Components of variational algorithms

Objective function: Encoding the problem to be solved

Cost function: Function be minimized (by a variational approach)

Parametrized quantum circuit (PQQC):
With tunable parameters 8 to minimize the objective
Mesurement: Measurement + basis transformation; input to the cost function

Classical optimizer

Z Fraunhofer

IKS

Seite 9 10.08.2023 © Fraunhofer IKS




and error mitiga

—
Seite 10 10.08.2023 © Fraunhofer IKS \ % Fraunhofer

IKS



Noise types affecting quantum computers

Different sources of noise affect the calculations on QC:

= Coherent noise
(reversible, e.g. by miscalibrated gates)

= Incoherent noise:
Readout noise/ Bit flips
(Flips the result of the measurement)
Depolarizing noise
(a qubit state loses its information due to interactions with the
environment)

Both phase and superposition lost
Amplitude and phase damping noise
(Energy dissipation to the environment)
Phase flip
(Change of the phase of the qubit)

[Nielsen & Chuang]

Shot noise (stochastic, due to the finite number of states)

Phase flip

\
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[M. McEwan et al., Resolving catastrophic error bursts from
cosmic rays in large arrays of superconducting qubits, Nature

Cosmic rays and radiation leading to catastrophic bursts P o7 ianzez)

ATMOSPHERE Air molecule

Production of high-energetic muons and gamma rays by cosmic rays

i,y from cosmic rays (+ other radiation) may strike superconducting QC
chip
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Interaction with the matter of the superconducting QC chip:

= Deposition of the energy 100 keV — 1 MeV and therefore >> energy
scale of the qubits ~ 25 peV

= u, y inonize substract

= Production of phonons with long lifetime

= Phonons break up Cooper pairs

= + Quasiparticles may tunnel Josephson junction -> resulting in a
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[M. McEwan et al., Resolving catastrophic error bursts from
cosmic rays in large arrays of superconducting qubits, Nature

Expe ri menta I setu p Physics 18, 107-111 (Jan 2022)]

Experiments executed on the Google Sycamore Processor, using 26
qubits with the couplings between the qubits turned off.

Rapid Repetitive Correlated Sampling Prepare |1) Idle Measure

L
= All qubits prepgred in state [1> -|Reset X {: E
= Allowed to be idle for 1 s, then measurement 0.3us 1ps 1us =
= Cycles repeated at intervals of 100 us Y. &
= Counts additional errors above decoherence and readout fidelities q0 “ 3
that are expected. qlﬁ EIEIEE e
qg 2
NE -
25— a—u—a—. 7
—_ v Interval '
Time 100us Time (s)
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[M. McEwan et al., Resolving catastrophic error bursts from
cosmic rays in large arrays of superconducting qubits, Nature

Physics 18, 107-111 (Jan 2022
Results yic an 2022)
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Impact of noise on the QAOA algorithm

Noise may impact the trainability of variational
algorithms + influence the result quality

Which circuit length and depth is acceptable to still
obtain good results?

Theoretical analysis by G. Gonzalez-Garcia et al.:
= Build a model of random circuits
= Start with product states, apply entanglement, disentangle to

another product state, measure

Finding: The noise propagates quickly through the circuit
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(a)

(b)

[G. Gonzalez-Garcia et al., Error propagation in

NISQ devices for solving classical optimization
problems, PRX Quantum 3, 040326]
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Findings

Which noise level p is acceptable to obtain a solution to
QAOA within a certain multiplicative error of its true
solution?

Allowed circuit depths depending on the chip architecture (1D or
2D):
= Maximum circuit depth allowed (n: system size):

1D: max(0 (p_%) ,0(1/(pn)))

2D: max(0 (p_%) ,0(1/(pn)))

As soon as half of the qubits depolarized, the average quality of the
solution is worse than the quality of the classical solution

A good solution requires a computation ~without errors -> an error
rate below p ~ 1/(nD) is required (D is the depth of the circuit)
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[G. Gonzalez-Garcia et al., Error propagation in
NISQ devices for solving classical optimization
problems, PRX Quantum 3, 040326]
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Error mitigation
Why we need it + definition

Noise presents a significant limitation to what we can
currently calculate on QC

How can we solve this problem?
= Alternative (shorter and small) algorithms (quantum advantage
unclear)
= Quantum error correction:
Correction schemes implemented on QC; results in more physical
qubits required
Various ideas exist
Threshold theorem (Aharonov + Ben-Or 1997 + Kitaev 1997):
If errors can be reduced below a certain threshold, circuits of
arbitrary length possible despite noisy hardware
= Quantum error mitigation:
Classical post-processing of algorithms to reduce the noise-
induced bias

Only effective for an ensemble of circuits, the individual result of a

circuit evaluation can be worse!
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[https://research.ibm.com/blog/gammabar-for-
quantum-advantage]

\

~ Fraunhofer



Impact of quantum error mitigation

In general quantified by the impact on the expectation
value and the variance of an operator

= The ideal result would be tr(0p,)
= Instead of the operator O we rather get the estimator 0

= Calculate:
I . 2
Mean square error: MSE[0] = E [(0 - tr(Opo)) ] =

Bias[0]?*+ Var[0]
Variance: Var[0] = E[0] — E[0]?

Noise shifts the mean with respect to ideal value + broadens the

variance.
Error mitigation reduces the shifts, but broadens the variance

further. (Reason: the error mitigation essentially constructs a
more complicated estimator)
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[Z. Cal et al, Quantum Error Mitigation,
arXiv:2210.00921 [quant-ph]]
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Example for an error mitigation technique
Zero-noise extrapolation

Assume that a circuit has a fault rate of A for a obtaining a state p; --- Fitted error-mitigated function: fi3; 6°)
@ Noisy expectation values: Tr[0p;] at A=0.5, 1, 1.5

) ) ) % Error-mitigated estimate: E[Owxm]=A0; é*]
This means tr(0p,) is a function of A

[=]
(%}

Idea of the zero-noise extrapolation: TN
= Measure tr(0p,) at the smallest circuit fault rate possible = ™
= Measure tr(0p,) at increasing circuit fault rates (boosted error rates) E 03
= Fit tr(0p,) as function of A 3 e
= (Different fit functions may be applicable depending on the situation) 3] RN
= Extrapolateto A =0 3 T .-
hhhhhhhhh *
— 0.5 1.0 1.5

.Circuit fault raté: A

[Z. Cal et al, Quantum Error Mitigation,
arXiv:2210.00921 [quant-ph]]
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