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Introduction to QML

1. What is quantum machine learning?

2. Basics

3. Quantum neural networks & variants

4. Quantum reinforcement learning
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QML may have different meanings

CQ – current practises: either enhancing classical ML by some quantum subroutine, or trying to resemble ML 

architecture by a quantum variant

Quantum machine learning (QML)
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Classical ML:

CC CQ

QC QQ

C: classical

Q: quantum
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History
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▪ 1980 → : Sporadic proposals to combine QC an ML

▪ 1995: first ideas about quantum models of neural networks → can quantum theories explain how the brain works?

▪ 2000s: quantum and statistical learning theory – first discussions

▪ 2009: Qboost algorithm on D-Wave quantum annealer

▪ 2013: Lloyd, Mohseni and Rebentrost mention the term ‘Quantum Machine Learning’

▪ 2014: Peter Wittek’s paper ‘Quantum Machine Learning – What quantum computing means to data mining’

▪ 2014 → : rapidly more publications on merger of ML and QC appear, on all sorts of topics
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QML algorithm
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+ Possibly hybrid versions taking the best of quantum and classical computing areas.
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https://medium.com/meetech/highlighting-quantum-computing-for-machine-learning-1f1abd41cb59
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Theoretical speed-ups in QML

Quantum computing in particular interesting for problems

showing an exponential speedup on quantum computers.

Theoretical speed-ups of quantum computing built on 

classical algorithms

Typically assumes perfect quantum computer, and typically

ignores the problem of reading in the data

→ Very optimistic improvement
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Quantum machine learning

QML one of the areas assumed

to show a practical quantum

advantage early

Selection of precise application field has

to be done wisely, however

Comparison of QML and ML by

Schuld et al.:
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Source: M. Schuld, N. Killoran, Is quantum advantage the right goal for quantum machine learning?, arXiv:2203.01340 [quant-ph]
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Comparison classical and quantum machine learning
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The importance of the data encoding
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Encoding data via a feature map

Classical data needs to be mapped from the input space to the space of

the quantum system.

If an inner product is defined on the state space of the quantum

system, this map is called feature map.

Different possibilities to realize feature map + very active field

of research:

▪ Binary encoding

▪ Amplitude encoding

▪ Rotation/Angle encoding

▪ Higher-order encoding

▪ Data reuploading

▪ …

The encoding might result in a linear or non-linear 

transformation and influence the problem complexity.

Example: binary encoding

Scalar 𝑥 = (−1)𝑏𝑠 𝑏𝜏𝑙−12
𝜏𝑙−1 + …+ 𝑏0 2

0

-> Binary: 𝑏 = 𝑏𝑠𝑏𝜏𝑙−1 … 𝑏0

-> Qubit representation: | 𝑏𝑠𝑏𝜏𝑙−1 … 𝑏0 >

Encoding circuit via X-gates

Non-linear transformation, but requires large number of qubits!
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The effect of feature maps
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Linear or non-linear transformation?
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Quantum support vector

machines
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Classical support vector machines

11.08.2023 © Fraunhofer IKSSeite 12

Used for discrimination problems

Aim is to find a hyperplane that discriminates between two classes of

feature vectors – done via maximising the distance between the

closest data points, called support vectors, and the hyperplane

I.e. if xi and yi training data, 𝑖 = 1,… , 𝑛 , and yi =+1 or = -1

Minimize | 𝜽 | subject to 𝒚𝒊 𝜽
𝑻𝒙𝒊 − 𝒃 ≥ 𝟏 for 𝒊 = 𝟏,… , 𝒏

H Lamba, https://towardsdatascience.com/support-vector-machines-svm-c9ef22815589
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Classical support vector machines – the kernel trick
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In case of a non-linear separation of data points 𝑥𝑖 → use a feature map

𝜙(𝑥𝑖) to embed into a higher dimensional space.

Reformulate problem to incorporate feature map.

→ Maximise



𝑖

𝛼𝑖 −
1

2


𝑖,𝑗

𝑦𝑖𝑦𝑗𝛼𝑖𝛼𝑗(𝜙 𝑥𝑖 ∙ 𝜙 𝑥𝑗 )

Subject to 0 ≤ 𝛼𝑗 ≤ 𝐶 and σ𝑖 𝛼𝑖𝑦𝑖 = 0

The function 𝐾 𝑥𝑖 , 𝑥𝑗 = 𝜙 𝑥𝑖 ∙ 𝜙(𝑥𝑗) is called kernel.

S. Yi, wikimedia

https://en.wikipedia.org/wiki/File:Kernel_trick_idea.svg
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Quantum support vector machines: Kernel estimators
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Quantum computers were proposed as kernel

estimators in 2019 (Havlicek et al.)

Idea: Each data point 𝑥𝑖 embeded in Hilbert space by means of a 

variational circuit 𝑈𝜙(𝑥𝑖) such that 𝑈𝜙 𝑥𝑖 |0 > = |𝜙 𝑥𝑖 >

Can estimate the kernel < 𝜙 𝑥𝑖 𝜙 𝑥𝑖 > |2 via running the circuit

and compute the relative frequency of |0>

El´ıas F. Combarro, A Practical Introduction to Quantum Computing: From Qubits to 

Quantum Machine Learning and Beyond
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Example application
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Identifying Higgs bosons in proton-proton collision data taken at the

Large Hadron Collider at CERN.

Proof-of-principle work by Sau Lan Wu and collaborators.

Comparison to classical support vector machines and boosted decision

trees.

Hints that QSVM might result in better results for little training data.

Sau Lan Wu, QuantHEP Seminar

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwioxuu26PnwAhXohP0HHV1FDi4QFjAEegQIChAD&url=http%3A%2F%2Fquanthep-seminar.org%2Fwp-content%2Fuploads%2F2020%2F11%2FQuantHEP-Seminar-2020-11-Sau-Lan-Wu.pdf&usg=AOvVaw1Tu8gmDWKKFh_owDVlDLop
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Quantum neural networks
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Quantum Neural Networks
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And their similarities and differences to classical neural networks

No precise definition of quantum neural networks

(QNN) / different understandings – sometimes simply

used for variational quantum models

Important difference between QNNs and NNs:

Variational quantum models:

[Source: https://blog.tensorflow.org/2020/03/announcing-tensorflow-quantum-open.html]

Quantum circuits are linear / 

unitary transformations

NNs are sequences of trainable

linear and element-wise non-

linear transformations
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Rotation encoding versus higher-order encoding
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Achieves a non-trivial encoding, that results into a higher capacity of the model.
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How to quantify the power of quantum neural networks
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Which functions can the QNN present?

Capacity of the QNN?

Trainability?

→ Partly assessed by (quantum) metrics:

▪ Information about the trainability through the spectrum of the Fisher 

information matrix

▪ Capacity through the effective dimension

▪ Possibility to express functions via the expressibility

▪ Entanglement capability
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The Fisher Information Matrix
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Measures the amount of information that a random variable X carries in 

dependency on an unknown parameter 𝜃

If a neural network is defined as statistical model 𝑝 𝑥, 𝑦; 𝜃 =

𝑝 𝑦 𝑥; 𝜃 𝑝 𝑥 , the Fisher information matrix is:

𝐹 𝜃 = 𝔼 𝑥,𝑦 ∼𝑝[
𝜕

𝜕𝜃
log 𝑝 𝑥, 𝑦; 𝜃

𝜕

𝜕𝜃
log 𝑝 𝑥, 𝑦; 𝜃 𝑇]

→ Measure for the sensitivity of the output of the neural network to

movements in the parameter space.

The distribution of the eigenvalues hint to the trainability of (Q)NNs 

(better trainability if eigenvalues more evenly distributed)
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How to quantify the power of quantum neural networks
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The effective dimension

Purpose: to estimate the size that a model 

occupies in the model space, where the Fisher 

information matrix serves as the metrics. 

Advantage: applicable for both quantum and 

classical models

Defined on a statistical model 𝑀𝚹 ≔ ሼ

ሽ

𝑝 ∙,∙; 𝜃 : 𝜃 ∈

𝚹 as:

𝑑γ,𝑛(𝑀𝚹) ≔ 2

1
𝑉𝚹

𝚹 det 𝑖𝑑𝑑 +
𝛾𝑛

2𝜋 log 𝑛
𝐹 𝜃 𝑑𝜃

log
𝛾𝑛

2𝜋 log 𝑛

𝐹𝑖𝑗 ≔ 𝑑
𝑉𝜃

𝜃 𝑡𝑟 F(𝜃) 𝑑𝜃
𝐹𝑖𝑗 𝜃

▪ n > 1, no. of data samples

▪ ϴ ∈ Rd is the parameter space

▪ Vϴ is the volume of the parameter space

▪ γ ∈ [0,1] hyperparameter for boundedness

▪ Fij is the normalized Fisher matrix
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How can QNNs be trained?
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Training a QNN requires an update of the variational

parameters

Achieved by minimizing a cost function by an automatic differentiation

-> requires the calculation of the partial derivative of the differentiable

function 𝑓(𝜃) in 𝜕𝜇 𝐶 𝜇 =
𝜕 𝐶

𝜕 𝑓𝜇
∙ 𝜕𝜇 𝑓𝜇

Calculation typically by parameter-shift rule:

▪ Calculation by the identity 𝜕𝜇𝑓𝜇 = σ𝑖 𝛼𝑖 𝑓𝜇+ 𝑠𝑖 with 𝛼𝑖 and 𝑠𝑖 real 

scalar values

▪ Not an approximate solution, but exact!

▪ Applies in particular for rotation gates

[M. Schuld et al., 
Machine 
Learning
with Quantum 
Computers, 
Springer 2021]
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Issues preventing trainability
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The trainability is affected by the shape of the cost

landscape presented to the optimizer.

This shape may exhibit problems:

▪ Barren plateaus (vanishing gradients)

▪ Slow and expensive optimization

▪ Danger of random walk

▪ Noise present in NISQ devices may also affect shape

▪ Possibly exponential many shots required

▪ Quantum error mitigation might be helpful
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Quantum convolutional

neural networks
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Convolutional Neural Network
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Quantum Convolutional Neural Network
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Source: Iris Cong, Soonwon Choi, Mikhail D. Lukin. 
“Quantum Convolutional Neural Networks” 
arxiv:1810.03787, 2018.
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Generalization with less data
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The generalization error is given by the difference between the expected true loss of a (Q)ML model and the average loss over

the training dataset: 𝑔𝑒𝑛 𝛼 = 𝑅 𝛼 − 𝑅𝑆(𝛼)

Specifically for QCNN particularly favorable: 𝑔𝑒𝑛 𝛼 ~ 𝑂
𝑇 log 𝑀𝑇

𝑁

for T parametrized local quantum channels, M gates and N the training set size

Sources: Matthias C. Caro, Hsin-Yuan Huang, M. 
Cerezo, Kunal Sharma, Andrew Sornborger, Lukasz 
Cincio, Patrick J. Coles. “Generalization in quantum
machine learning from few training data” 
arxiv:2111.05292, 2021.
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Generalization with less data
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Source: Korbinian Kottmann, Luis Mantilla Calderon, Maurice Weber, Generalization in QML from few 
training data, Pennylane demonstration, 
https://pennylane.ai/qml/demos/tutorial_learning_few_data.html
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Application example: Reliable QC-assisted AI for medical classification tasks
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Identify lesions or nodules as benign or malign

Malign breast lesion Benign breast lesion
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Application example: Reliable QC-assisted AI for medical classification tasks
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Identify lesions or nodules as benign or malign
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Reliable QC-assisted AI for medical classification tasks
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Context: Artificial intelligence increases in importance in the medical diagnosis process (e.g. in imaging).

Challenges: Image data is expensive, complex and only available in small numbers (102 -103),

The decision process needs to be comprehensible and reliable. 

→ Classical methods need large training datasets. 

Target: Improvement of the medical classification tasks via hybrid, quantum computing-assisted machine learning 
methods. 

Expected improvement: QC-assisted methods might result into a faster training of the algorithms  - in particular 
in situations with little training data
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Hybrid quantum-classical convolutional neural networks
Quantum-computing assisted machine learning

Idea: Replace some of the convolutional 

layers by quantum convolutional layers 

QCCNNs promise to be better suited for situations 

with little training data → potentially more 

precise and faster training convergence

Hybrid ansatz → possible to execute on current 

or soon-available NISQ quantum computers
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Hybrid QCCNN:

Source: https://upload.wikimedia.org/wikipedia/commons/6/63/Typical_cnn.png, Aphex34, 
CC BY-SA 4.0 <https://creativecommons.org/licenses/by-sa/4.0>, via Wikimedia Commons

Quantum 

convolutions

https://upload.wikimedia.org/wikipedia/commons/6/63/Typical_cnn.png
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Hybrid quantum-classical convolutional neural networks
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Classification example
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Identifying types of lesions in ultrasound images of the breast

Achieved promising performance of 

a hybrid quantum-classical 

convolutional neural networks, 

encouraging further studies.

More complex data encoding schemes 

more promising than simple encoding 

schemes.

All configurations used a series of one-

and two-qubit gates.

Paper: A. Matic, M. Monnet, J. M. Lorenz, B. Schachtner, T. Messerer, Quantum-classical convolutional neural
networks in radiological image classification, arXiv:2204.12390 [quant-ph], 
https://ieeexplore.ieee.org/document/9951255
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Hybrid QCCNN on 3D medical data

3D CT scans of the lung –

classification of potentially malign

nodules

Image size 128 x 128 x 64

Data compression required before

quantum convolutional layer can be

used

▪ Achieved by a sequence of classical

convolutional layers with ReLU

activation functions before a 

quantum convolutional layer

▪ 8 quantum kernels in parallel required

within the quantum convolutional

layer
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Considerations for QC hardware and software
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Current QC hardware limited in size, connectivity and affected

by noise:

▪ Only small QML architectures possible (small number of qubits, small

depth) – not full QCNN

▪ Smaller architectures can (theoretically) be processed by current

hardware

▪ In practise for the specified 2D architecture required:

~ 1000 images (28x28) -> 1000 * 14 * 14 circuits = 196000 circuits

* Shots

* Number of training iterations

= ~ 3.9 billions circuit evaluations

+ backpropagation procedure

▪ Without runtime environments: execution time is a couple of months

▪ With runtime, further downscaling of images, and a couple of tricks 

~ hours – days

Improvements in runtime environments and excution times

needed!

Control system based

on classical technology

Controls QC

QC

Classical computer or

HPC system

Iteration
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Quantum reinforcement

learning
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Reinforcement learning
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Learning in reaction to an environment

Reinforcement learning (RL) is the third direction besides

supervised and unsupervised learning

Main ideas:

▪ An agent learns in an interactive environment from the feedback it

receives on actions/experiences

▪ Connected to Markov Decision Processes

▪ Conventions:

▪ States S

▪ Possible actions 𝐴

▪ Rewards R

▪ At each learning operation/time step, the agent interacts + observes

the reaction of the environment

▪ Probability to reach a new state s‘ and reward r‘:

𝑝 𝑠′, 𝑟 𝑠, 𝑎 = 𝑃𝑟 𝑆𝑡 = 𝑠′, 𝑅𝑡 = 𝑟 𝑆𝑡−1 = 𝑠, 𝐴𝑡−1 = 𝑎

[R. Sutor, Reinforcement Learning - An Introduction, 
http://incompleteideas.net/book/the-book-2nd.html]
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Demonstration

11.08.2023 © Fraunhofer IKSSeite 39



Public information

Quantum reinforcment learning
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Augment reinforcement learning by a QAlg

Quantum-inspired algorithms

Leverage amplitude estimation

or Grover‘s algorithm

PQC-Based Function

Approximations

Use QNNs to replace classical

NNs approximating functions in 

a RL algorithm

NISQ compatible, but advantage

unclear

Insert quantum subroutines

Similar to the idea of inserting

PQC, but if using fault-tolerant 

QAlg possibly speed guarantees

Full quantum formulation

The whole algorithm runs on a 

quantum computer
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Better modeling decisions by the use of QC
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Differences in patient’s genetics + physiology may alter 

responses to radiotherapy treatments.

→ Ideally adapt therapy to responses and enable a personalized 

medicine.

Decision under uncertainties.

→ Quantum algorithms expected to being able to well mimic this.

[Source: D. Niraula, Quantum deep reinforcement learning for clinical 
decision support in oncology: application to adaptive radiotherapy, Scientific 
Reports volume 11, Article number: 23545 (2021)]
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The algorithm
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Construction of a quantum deep reinforcement learning 

framework, where a quantum decision process is paired 

with a model-based deep q-learning algorithm.

[Source: D. Niraula, Quantum deep reinforcement learning for clinical decision support in oncology: application to adaptive radiotherapy, Scientific Reports volume 11, Article number: 23545 (2021)]
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The quantum controller circuit + results
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[Source: D. Niraula, Quantum deep reinforcement learning for clinical 
decision support in oncology: application to adaptive radiotherapy, Scientific 
Reports volume 11, Article number: 23545 (2021)]



Public information11.08.2023 © Fraunhofer IKSSeite 44

Quantum reinforcement learning
To accelerate reactions to environments

Possible application fields: 

▪ Optimization of industrial production chains

▪ Guided robots

Advantage of using QRL:

▪ Less trainable parameters required than in classical reinforcement

learning for achieving comparable or better performance.

▪ Less training steps required/faster time to solution.

Proof-of-concept example:

▪ Stochastic frozen lake environment (20% probability to move to non-

desired directions).

▪ Hybrid quantum-classical algorithm with quantum kernels in the

agent.

▪ Quantum variants succeed to find solution faster (less time steps).
[T.-A. Dragan, M. Monnet, C.B. Mendl, J.M. Lorenz, Quantum Reinforcement 
Learning for Solving a Stochastic Frozen Lake Environment and the Impact of 
Quantum Architecture Choices, arXiv:2212.07932].

https://arxiv.org/abs/2212.07932
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Architecture
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Different architecture choices for the quantum part
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Circuit 2 – basic circuit with basic
entanglement

Circuit 5 – programmable universal quantum circuit Circuit 13 – generic model circuit architecture for classification tasks
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Metrics
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Expressibility

Expressibility: The ability of the circuit to generate states that represent

the Hilbert space well

[S. Sim et al., Expressibility and entangling capability of parameterized quantum circuits for 
hybrid quantum-classical algorithms, Adv. Quantum Technol. 2 (2019) 1900070]

[T.-A. Dragan, M. Monnet, C.B. Mendl, J.M. Lorenz, Quantum Reinforcement 
Learning for Solving a Stochastic Frozen Lake Environment and the Impact of 
Quantum Architecture Choices, arXiv:2212.07932].

https://arxiv.org/abs/2212.07932
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Conclusion

QC and QML is an emerging technology that is currently

developing fast.

Theoretical and academic quantum adavantage has been proven, 

but the practical quantum advantage (also in HEP) remains to be

demonstrated.

On the way to the demonstration many questions to anwer:

▪ How to construct quantum circuits to obtain benefits?

▪ How to build the software stack and perform the integration of QC 

into HPC systems to not lose an advantage again?

▪ Where will this new technology be useful in practise?

▪ How to deal with big data?
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