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Introduction to QML

1. What is quantum machine learning?
2. Basics
3. Quantum neural networks & variants
4. Quantum reinforcement learning
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Quantum machine learning (QML)

QML may have different meanings

C: classical
. Q: quantum
Classical ML:

S

= CC

(49]

S

- jole QQ

Computer type

CQ - current practises: either enhancing classical ML by some quantum subroutine, or trying to resemble ML
architecture by a quantum variant
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History

1980 — : Sporadic proposals to combine QC an ML

= 1995: first ideas about quantum models of neural networks — can quantum theories explain how the brain works?
= 2000s: quantum and statistical learning theory — first discussions

= 2009: Qboost algorithm on D-Wave quantum annealer

= 2013: Lloyd, Mohseni and Rebentrost mention the term ‘Quantum Machine Learning’

= 2014: Peter Wittek’s paper ‘Quantum Machine Learning — What quantum computing means to data mining’

= 2014 — : rapidly more publications on merger of ML and QC appear, on all sorts of topics

\

~ Fraunhofer

IKS

Seite 4 11.08.2023 © Fraunhofer IKS Public information LUDWIG




QML algorithm

Quantum
algorithms
building on
classical
machine
learning
algorithms

Quantum
Clustering

finding

When the data is
represented in a very
large dimension space,
it is very difficult to
perform the dusetring
with a dassical
computer. The use of
quantum computers is
a very good solution.

Finding the hyperplane
that separates many
data points that are
represented in a high

dimensional space is so
difficult on a dassical

computer. on a
quantum computer, it
can be solved
extremely efficiently.

Quantum Feature Qu[? mtum
PCA topology eep
Learning
The goal of this This is a method for Exdting breakthroughs

algorithm is to find the
proper axes along
which to group this

data. This is something

that takes O(N?) on a

classical computer. But

in quantum version you

can do it exponentially

faster.

finding the topological
features of data. This
problem can be
mapped to a problem
of finding the
eigenvectors and
eigenvalues of some
huge, high-dimensional
malrix.

may soon bring real
quantum neural
networks, specifically
deep learning neural
networks, to reality.
Many research papers
hawve shown remarkable
results in quantum
deep leaming

Paper :

https:f{/arxiv.orgfpdff1801.
06316.pdf

Ittp:/{ csis. pace. eduf/~ctapp
ert/srd2018/2018PDF/a3.pd

BUUIEST sUIyDBA JOJ bUNAWwoy
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https://medium.com/meetech/highlighting-quantum-computing-for-machine-learning-1f1abd41cb59

Theoretical speed-ups in QML

Method Speedup Amplitude HHL Adiabatic gRAM
. . . _ _ amplification
Quantum computing in particular interesting for problems Bayesian OWN)  Yes Yes No No
showing an exponential speedup on quantum computers. inference 05107
Online OWN)  Yes No No Optional
perceptronl08
Least-squares O(log\)* Yes Yes No Yes
fitting®
Classical OWN)  Yes/No Optional/ No/Yes Optional
Boltzmann No
. : : {020
Theoretical speed-ups of quantum computing built on machine _
) , Quantum O(logN)* Optional/No No No/Yes No
classical algorithms Boltzmann
machine?261
Quantum O(log\)* No Yes No Optional
: . 11
Typicall m rf ntum computer, an icall PCA
.yp cally assumes pertect qug tl.J computer, a d typically Ouantum O(logN)* No Ves No Yes
ignores the problem of reading in the data support vector
machinel3
Quantum OWN)  Yes No No No
v timistic i t reinforcement
— Very optimistic improvemen learning®
*There exist important caveats that can limit the applicability of the
method>!.
—
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Quantum machine learning

QML one of the areas assumed Property Problems studied in quantum computing Problems solved by machine learning
to show a practical quantum classical low — problems are carefully selected to be prov- high — machine learning is applied on an indus-
performance ably difficult for elassical computers trial scale and many algorithms run in linear time

advantage early

Selection of precise application field has
to be done wisely, however

size of inputs

small — near-term algorithms are limited by small
qubit numbers, while fault-tolerant algorithms
usually take short bit strings

in practice

very large — may be millions of tensors with mil-
lions of entries each

problem very structured - often exhibiting a periodic “messy” — problems are derived from the human
structure structure that can be exploited by interference or “real-world” domain and naturally complex to
Compariscn of QML and ML by state and analyse
Schuld et al.: theoretical high - there is a large bias towards problems shifting theory is currently been re-built
accessibility about which we can theoretically reason around the empirical success of deep learning
evaluating computational complexity the dominant practical benchmarks — machine learning re-
performance measure to assess the performanece of an algorithm search puts a strong emphasis on empirical com-

is asymptotic runtime scaling

parisons between methods

Source: M. Schuld, N. Killoran, Is quantum advantage the right goal for quantum machine learning?, arXiv:2203.01340 [quant-ph]
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Comparison classical and quantum machine learning

Seite 8
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dataset D
new input x

Quantum
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new input x

Machine learning
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The importance of the data encoding
Encoding data via a feature map

Classical data needs to be mapped from the input space to the space of
the quantum system.

If an inner product is defined on the state space of the quantum
system, this map is called feature map.

Different possibilities to realize feature map + very active field
of research:

= Binary encoding

= Amplitude encoding

Rotation/Angle encoding

Higher-order encoding

Data reuploading

The encoding might result in a linear or non-linear
transformation and influence the problem complexity.

Seite 9 11.08.2023 © Fraunhofer IKS
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Example: binary encoding
Scalar x = (—1)%s (by,_, 27 + ...+ by 2°)

-> Binary: b = bsb b,

Ti_q '

-> Qubit representation: | b;b by >

Tl—l nnn

Encoding circuit via X-gates

Non-linear transformation, but requires large number of qubits!
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The effect of feature maps
Linear or non-linear transformation?

Amplitude encoding

0)
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[M. Schuld et al., Machine Learning

2 with Quantum Computers, Springer 2021]
PY [ |
g 1
[ |
®
0
" Rotation encoding (simple Pauli-X)
l r z2 8%
AN N\
Basis encoding . X
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Quantum support
machines

—
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Classical support vector machines

Used for discrimination problems

Aim is to find a hyperplane that discriminates between two classes of
feature vectors — done via maximising the distance between the
closest data points, called support vectors, and the hyperplane

l.e. if x;and y; training data, i = 1, ...,n, and y,=+1 or = -1

Minimize ||0]| subject to y;(6Tx; —b) > 1fori=1,..,n
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Support Vectors

.
e .
%W e

Width

X

H Lamba, https:/towardsdatascience.com/support-vector-machines-svm-c9ef22815589
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Classical support vector machines - the kernel trick

In case of a non-linear separation of data points x; > use a feature map
¢ (x;) to embed into a higher dimensional space.

Reformulate problem to incorporate feature map.

- Maximise

L

1
zai —3 ZYinai“j(Q')(xi)' o(x))
iL,Jj

Subjectto 0 < a; <Cand};a;y; =0

The function K (x;,x;) = ¢(x;) - ¢(x;) is called kernel.
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https://en.wikipedia.org/wiki/File:Kernel_trick_idea.svg

Quantum support vector machines: Kernel estimators

Quantum computers were proposed as kernel
estimators in 2019 (Havlicek et al.)

Idea: Each data point x; embeded in Hilbert space by means of a
variational circuit Ug (x;) such that Uy (x;)]0 > = |¢(x;) >

0) — Us(x) U} (%)

Can estimate the kernel |< ¢(x;)|¢(x;) > |? via running the circuit

S EPNEPR

and compute the relative frequency of |0> 0) —]

Elnas F. Combarro, A Practical Introduction to Quantum Computing: From Qubits to
Quantum Machine Learning and Beyond
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Example application

Identifying Higgs bosons in proton-proton collision data taken at the
Large Hadron Collider at CERN.

Proof-of-principle work by Sau Lan Wu and collaborators.

Comparison to classical support vector machines and boosted decision
trees.

Hints that QSVM might result in better results for little training data.
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Quantum Neural Networks
And their similarities and differences to classical neural networks

No precise definition of quantum neural networks Variational quantum models:
(QNN) / different understandings — sometimes simply
used for variational quantum models Evaluate Gradients &

Update Parameters

. : Eval
Important difference between QNNs and NNs: ; "g;’;te
i I Function
1
|
Quantum circuits are linear / ‘\ 0 1
unitary transformations >
Prepare Evaluate Evaluate
Quantum Dataset Quantum Classical
Model Model

NNs are sequences of trainable
linear and element-wise non-
linear transformations

[Source: https://blog.tensorflow.org/2020/03/announcing-tensorflow-quantum-open.html]

—
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Rotation encoding versus higher-order encoding

|
[A. Abbas et al, The power of quantum neural
networks, Nat Comput Sci 1, 403-409 (2021)]
0 i |—{RZ(z1) 0 ] RZ(x1) s
o —{RZ(r) | 0 — 1 —{RZ(x) L RZ{r rs) |—b J‘
| RZ(xs) > w — | RZ{x3) B RZ(r as) e — RZ (03 )
. i
i ] RZ(rs) | i — ] RZ{xrs) B RZrs yrs) b
Achieves a non-trivial encoding, that results into a higher capacity of the model.
—
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How to quantify the power of quantum neural networks

[A. Abbas et al, The power of quantum neural

— networks, Nat Comput Sci 1, 403-409 (2021)]
Which functions can the QNN present? L, — A2 s
: T
00— s | HAA| 2 D
. = U, 10377 = [, Go |y = |ge(x : DA
Capacity of the QNN? T B - 10) |tz o [Vz) = |go(2)) iyl % y
7 y—] HAA] = >
feature map variational model =~ measurement
U, Geo f(z)=y
— Partly assessed by (quantum) metrics: T
= Information about the trainability through the spectrum of the Fisher S - [RY () f—
information matrix o) RY (7] b . @7
= Capacity through the effective dimension L
. . . . } (g Fau! {Bs4a)
= Possibility to express functions via the expressibility S e [osen}—
= Entanglement capability _ NS

[} RY(fs) RY (#as)

H
%] _‘

\
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The Fisher Information Matrix

[A. Abbas et al, The power of quantum neural
networks, Nat Comput Sci 1, 403-409 (2021)]

Measures the amount of information that a random variable X carries in
dependency on an unknown parameter 6

If a neural network is defined as statistical model p(x,y; 8) =

p (ylx’ 9)p(x)' ‘the F|She|’ |nformat|on mat“x |S classical neural network easy quantum model quantum neural network
P F] £ o0 0.8 4 0.8 -
— — . 0) — T 5
F(Q) - IE(XJ’)NP [69 logp(x, Vs 0) 00 lng(X, Vi 9) ] -c; 0.6 0.6 0.6
g 0.4 4 0.4 4 0.4 -
=
0.2 0.2 4 0.2
— Measure for the sensitivity of the output of the neural network to 00
. 0 5 10 15 20 0 2 4 6
movements in the parameter space. cigenvalue size (bins = 5)

The distribution of the eigenvalues hint to the trainability of (Q)NNs
(better trainability if eigenvalues more evenly distributed)
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How to quantify the power of quantum neural networks

The effective dimension [A. Abbas et al, The power of quantum neural
networks, Nat Comput Sci 1, 403-409 (2021)]

Purpose: to estimate the size that a model
occupies in the model space, where the Fisher

classical neural network

information matrix serves as the metrics.

easy quantum model
quantum neural network

1.5 4

— ibmg montreal backend

Advantage: applicable for both quantum and
classical models

loss value

Defined on a statistical model Mg := {p(:,;;0): 6 €

normalised effective dimension d; n/q
3 =

0} as:

1 o0 v IH e 0 ! I]L[-, 0 '2I[| 10 60 80 100

— det ld -|— — F(Q) d9 number of data number of iterations

Vo fG a’2m log n

(a) (b)
dy,n(Me) =2 vn = n> 1, no. of data samples
log (27-[ log n) = 0 € RY is the parameter space
v = Vg is the volume of the parameter space
Pij = d 0 Fij €) = y € [0,1] hyperparameter for boundedness

[, tr(F(6))de
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How can QNNs be trained?

Training a QNN requires an update of the variational
parameters

Achieved by minimizing a cost function by an automatic differentiation

-> requires the calculation of the partial derivative of the differentiable
function £(8) in 8, C(w) = aa—fi -0, fo

Calculation typically by parameter-shift rule:

= Calculation by the identity d,f, = X; a; fu+s, With @; and s; real
scalar values

= Not an approximate solution, but exact!

= Applies in particular for rotation gates

Seite 22 11.08.2023 © Fraunhofer IKS
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a. Computing the expectation

b. Computing a partial derivative

T

LU
[o)

|0y 1} [ H
0) G(u—s I
L i

[M. Schuld et al,,

Machine
Learning
with Quantum
Computers,
Springer 2021]
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Issues preventing trainability

The trainability is affected by the shape of the cost a) noise-free landscape
landscape presented to the optimizer.

This shape may exhibit problems:

L]
so1jsiyels ajdwes ajiuy

= Barren plateaus (vanishing gradients)

[[yd-3uenb] TSOTO 60T T:AIXJE ‘¢ SWYIIOS|Y Wnueny

|euonelieA AsioN Jo Aujigeuted] anoidwi uoiesiiA Joi3 ued “je 13 Sue s

: 7  C
Slow and expensive optimization
Danger of random walk s
= Noise present in NISQ devices may also affect shape
Possibly exponential many shots required
CYFL

Quantum error mitigation might be helpful
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Quantum convol
neural networks

—
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Convolutional Neural Network

c = - — — CAR
& = ] — TRUCK
i B ] — VAN
' [ [] — BicYCLE
INPUT CONVOLUTION + RELU  POOLING CONVOLUTION + RELU POOLING FLATIEN o:aur:gno SOFTMAX
FEATURE LEARNING CLASSIFICATION
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Quantum Convolutional Neural Network

\

AN \

|
LA
o
.

U 1 / U2
Uy
Uy
Uy
Source: Iris Cong, Soonwon Choi, Mikhail D. Lukin.
Ul “Quantum Convolutional Neural Networks”
arxiv:1810.03787, 2018.
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Generalization with less data

The generalization error is given by the difference between the expected true loss of a (Q)ML model and the average loss over
the training dataset: gen(a) = R(a) — Rg(a)

Specifically for QCNN particularly favorable: gen(a)~ O ( /—T IOI%MT)

for T parametrized local quantum channels, M gates and N the training set size

Sources: Matthias C. Caro, Hsin-Yuan Huang, M.
Cerezo, Kunal Sharma, Andrew Sornborger, Lukasz
Cincio, Patrick J. Coles. “Generalization in quantum
machine learning from few training data”
arxiv:i2111.05292, 2021.
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Generalization with less data

|
Train and Test Losses Generalization Error gen(a) = R(a) — Ryl(a) Train and Test Accuracies
05 — N=2 —— N=20 —e— Train
—— N=5  —— N=40 -~ Test 22 1.0
\ N=10 —— N=80
0.4 >3 0.9
I ik bl o T
S e
o
0.8
7] —4 © -
8§03 2 § SV
e
0.7
0.2 2 {,,,x’_,«-»***-r--*'“*‘“*“‘*‘““"'"
] i/
! s
0.6 *;’ —— N=2 —— N=20 —e— Train
%
276 — N=5 —— N=40 -x- Test
0.1 — N=10 — N=80
0.5
0 20 40 60 80 100 2 5 10 20 40 80 0 20 40 60 80 100
Epoch Training Set Size Epoch
Source: Korbinian Kottmann, Luis Mantilla Calderon, Maurice Weber, Generalization in QML from few
training data, Pennylane demonstration,
https:/pennylane.ai/gml/demos/tutorial_learning_few_data.html
—
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Application example: Reliable QC-assisted Al for medical classification tasks
Identify lesions or nodules as benign or malign

Malign breast lesion Benign breast lesion

Source: W. Al-Dhabyani, et al, "Dataset of breast ultrasound images".

Data Brief, vol 28, pp 104863, 2020

Z Fraunhofer
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Application example: Reliable QC-assisted Al for medical classification tasks
Identify lesions or nodules as benign or malign

. benign lung nodule malign lung nodule

0_
251

20
50 A
40 75 -
100 A

60
125 4
80 150 -
100 : , R

0 20 40 60 80 100 0 50 100 150
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Reliable QC-assisted Al for medical classification tasks <E@E)

Context: Artificial intelligence increases in importance in the medical diagnosis process (e.g. in imaging).

Challenges: Image data is expensive, complex and only available in small numbers (102 -103),

The decision process needs to be comprehensible and reliable.
— Classical methods need large training datasets.

Target: Improvement of the medical classification tasks via hybrid, quantum computing-assisted machine learning
methods.

Expected improvement: QC-assisted methods might result into a faster training of the algorithms - in particular
in situations with little training data

Z Fraunhofer

IKS
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Quantum-computing assisted machine learning
Hybrid quantum-classical convolutional neural networks

Hybrid QCCNN:

Idea: Replace some of the convolutional
layers by quantum convolutional layers Feature maps

QCCNNSs promise to be better suited for situations
with little training data - potentially more
precise and faster training convergence

Hybrid ansatz - possible to execute on current

or soon-available NISQ quantum computers Convolutions

Quantum Source: https://upload.wikimedia.org/wikipedia/commons/6/63/Typical cnn.png, Aphex34,
CC BY-SA 4.0 <https:/creativecommons.org/licenses/by-sa/4.0>, via Wikimedia Commons

Subsampling Convolutions Subsampling Fully connected

convolutions

Z Fraunhofer
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https://upload.wikimedia.org/wikipedia/commons/6/63/Typical_cnn.png

Hybrid quantum-classical convolutional neural networks

|
input image feature maps fully connected output
layer
classical
convolution ]
\
[]
viii P
10) === e~ & P
v Sx= | oo P
|0) H 2 3 m— : {  quantum
v: T = i i convolution
0 L& =5 — - :
| ) g © i |0} R.(z1) N — Ra(61) &~
0) y — ! s 7
< 0) R.(z2) N 5 = = H R.(0:) | [~
N & £ 3
|0y R.(z3) N N § = —|RI(93)' & [~
N &
|0} R.(z4) — m —| Ry(6s) [ & El
—
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Classification example

Identifying types of lesions in ultrasound images of the breast

Achieved promising performance of
a hybrid quantum-classical
convolutional neural networks,
encouraging further studies.

More complex data encoding schemes
more promising than simple encoding
schemes.

All configurations used a series of one-
and two-qubit gates.
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Paper: A. Matic, M. Monnet, J. M. Lorenz, B. Schachtner, T. Messerer, Quantum-classical convolutional neural
networks in radiological image classification, arXiv:2204.12390 [quant-ph],
https://ieeexplore.ieee.org/document/9951255
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Hybrid QCCNN on 3D medical data < >

3D CT scans of the lung -
classification of potentially malign
nodules

Image size 128 x 128 x 64

Data compression required before

quantum convolutional layer can be

used

= Achieved by a sequence of classical
convolutional layers with RelLU
activation functions before a
quantum convolutional layer

= 8 quantum kernels in parallel required
within the quantum convolutional
layer
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Considerations for QC hardware and software

Current QC hardware limited in size, connectivity and affected
by noise:

Only small QML architectures possible (small number of qubits, small
depth) — not full QCNN

Smaller architectures can (theoretically) be processed by current
hardware

In practise for the specified 2D architecture required:

~ 1000 images (28x28) -> 1000 * 14 * 14 circuits = 196000 circuits
* Shots

* Number of training iterations

= ~ 3.9 billions circuit evaluations

+ backpropagation procedure

Without runtime environments: execution time is a couple of months
With runtime, further downscaling of images, and a couple of tricks
~ hours — days

Improvements in runtime environments and excution times
needed!
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Reinforcement learning
Learning in reaction to an environment

Reinforcement learning (RL) is the third direction besides

supervised and unsupervised learning

Main ideas:

= An agent learns in an interactive environment from the feedback it
receives on actions/experiences

= Connected to Markov Decision Processes

= Conventions:
States S
Possible actions A
Rewards R

= At each learning operation/time step, the agent interacts + observes

the reaction of the environment
= Probability to reach a new state s* and reward r':

p(s',rls,a) = P{S; =s",Ry =71 |S¢—1 =5,A-1 = a}
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[R. Sutor, Reinforcement Learning - An Introduction,
http://incompleteideas.net/book/the-book-2nd.html]
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Demonstration
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Quantum reinforcment learning
Augment reinforcement learning by a QAlg

PQC-Based Function Insert quantum subroutines Full quantum formulation
Quantume-inspired algorithms Approximations
Similar to the idea of inserting The whole algorithm runs on a
Leverage amplitude estimation PQC, but if using fault-tolerant guantum computer
or Grover's algorithm Use QNN to replace classical QAlg possibly speed guarantees

NNs approximating functions in
a RL algorithm

NISQ compatible, but advantage
unclear

\
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Better modeling decisions by the use of QC

[Source: D. Niraula, Quantum deep reinforcement learning for clinical
decision support in oncology: application to adaptive radiotherapy, Scientific
Reports volume 11, Article number: 23545 (2021)]

Response-adapted Lung Cancer RadioTherapy

Differences in patient’s genetics + physiology may alter

Treatment Qutcomes:
' agment
responses to radiotherapy treatments. o Treatment T‘ga‘)muo“ 1. Tumor Control [Local Control (LC)]
v N
. e Response tﬂ'\/‘ t_ < ,,_,‘/\’ 2. Complication [Radiation Induced
— |deally adapt therapy to responses and enable a personalized “Ra adiother rapy | Trea 4 B ke Pneumonitis (RP2)]

medicine. ,

Decision under uncertainties.

— Quantum algorithms expected to being able to well mimic this.

i
J’
[

IJ!

—

R-ART GOAL:
Maximize LC /Minimize RP2
via Treatment Adaptation

Figure 1. Schematics of response-adapted lung cancer radiotherapy. Response-adapted radiotherapy evaluates
treatment response in the first two-thirds (week 1 to week 4) of the treatment period and then makes necessary
adaptation in the last third (week 5 to week 6), with the goal of optimizing the treatment plan. For the case of
lung cancer, optimization translates into maximizing tumor (local) control (LC) and minimizing radiation-
induced pneumonitis of grade 2 or higher (RP2).

-—
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The algorithm

|
qDRL Optimal Decision Making
Q-function (Deep Q- Net) Select action with
DQN:S = R? Highest Q-value
Bk LNk )
i argmax

s 1 O Q0 O Wl ﬁ,;) (1.}

Input OO

Arbitrary
state

EQ

Updating Q-function (Training Decp Q- Net)

38
a0/ DS 0
OO

Loss= Huber(y, = (q)a,))
Tear for terminaly ¢
Feay + ymax((Quey . D
for nonterminal state 5,

=

Decision-making via
quantum stales

1.|D) = Amp,y; D)

2. Measure(|D))

(] + (]
Artificial

Radiotherapy
Environment

/] Ampq: - Amplification of eigen decision |d); on

[Source: D. Niraula, Quantum deep reinforcement learning for clinical decision support in oncology: application to adaptive radiotherapy, Scientific Reports volume 11, Article number: 23545 (2021)]
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Construction of a quantum deep reinforcement learning

framework, where a quantum decision process is paired

with a model-based deep g-learning algorithm.

Artificial Radiotherapy Environment

Transition Function RT Outcome Estimator Reward Function
TF:SXD =S Puwpz 1S = [0,1] R:[0,1] x [0,1] = R
i 0B8R o8
QO 5 o[ sels 0L QIR0 || P
HHOO O QO Prez
Input |d), L0 02 ®
s ’
|_' =» Patient state (5) Prc % (1 = pre2)
I |d),j Radiomecs (Imaging):
GLSZMZSV
Cancer tissue Normal tissue
Radiaton Radiaton:
Tumor gEUD Lung gEUD
Cytokines SNP (genctics )
(proteln): IP10 Crerl-Rs2234671
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The quantum controller circuit + results

[Source: D. Niraula, Quantum deep reinforcement learning for clinical
decision support in oncology: application to adaptive radiotherapy, Scientific
Reports volume 11, Article number: 23545 (2021)]

(a) Pre-Control CNOT (b) s rover Amplificatio
Gates _ Gates o TRMI Sanfiags
A »> 0.030
IO) _. goozs
— |0 § 0.020
9 g 0.015
E |0} —. * 0.010
O
O Io) 0.005
e ONONONDO N ONONONONONO O ~NDONONO Oy
oty R R O
0 i e e B e e e e e T T e T R R R R A )
10) . j H C) 1Quantum Controller Circuit
10y —Bl—- L o0l IBMQ 16 Melbourne
3 >
£ 10— o — S 01
3 ©
= 05 o — S 010
|0) —. 9_ _- 0.05
5, % 0 y 1 2 3 4
2 -~ = > < 0.00
Reverse Reverse Measurement
Gates Gates
—
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Quantum reinforcement learning
To accelerate reactions to environments

Possible application fields:
= Optimization of industrial production chains
= Guided robots

Advantage of using QRL:

= Less trainable parameters required than in classical reinforcement
learning for achieving comparable or better performance.

= Less training steps required/faster time to solution.

Proof-of-concept example:

= Stochastic frozen lake environment (20% probability to move to non-
desired directions).

= Hybrid quantum-classical algorithm with quantum kernels in the
agent.

= Quantum variants succeed to find solution faster (less time steps).
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Munich
Quantum
Valley

20000 40000 60000 80000
Time steps

—— PQC, Circuit 2 PQC, Circuit 4 —— PQC, Circuit 6 —— NN, 2 neurons per IayerJ

[T.-A. Dragan, M. Monnet, C.B. Mendl, J.M. Lorenz, Quantum Reinforcement
Learning for Solving a Stochastic Frozen Lake Environment and the Impact of
Quantum Architecture Choices, arXiv:2212.07932].
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https://arxiv.org/abs/2212.07932

Architecture

a' = argmaxy 7(s, a)

S Environment <

update trainable
parameters ®p

Binary
Conversion

Sbin

Binary
Conversion

Quantum Module

4x4
Linear Layer

4x1 |

Categorical

j,

Distribution

V(s)

y

Lo

ss L Adam
Optimizer

(s, aj)

r

Computation

A

h

Linear Layer

update trainable
parameters Oy
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Different architecture choices for the quantum part

—
_________________________________________ Trainable Layer o RoStprocessing
0) = Bx | Rz |- Bx | Rz A =
0) = Rx — Rz H{ Rx — Rz ot @— z
vy = f(zo..... z3)
‘qo) ....... RZ ....................... () |0) RX | RZ | 5 RX L RZ (.) E’_ 2o
Ja,) Rz @ 0) = Rx — Rz = Bx | Bz @_ 23
mz) — O BaSISEnlbOddlngh[edburernent .......................................
laz) Ry
Circuit 2~ basic dircut with basic
entanglement
N ....... . ................................. @@E ............................................. R ....... N _______ R_| ____________________________________________ @ ............................... @ ................
lay) Ry L_'R_lz_] LR_lz_] IRZ H Rx |—| Ry |— laq) ——E M | iz
jaz) —{ Rx | Rz - R<] [R.] [R/] Ry la2) —{ &y | [R/] Ry 7]
as) Ry (7] (7] (7] Rx las) = By | [ 7z [ Ry ] [ 1]
""""""""" Circuit 5 - programmable universal quantumcircit ~ Circuit 13 - generic model circuit architecture for classification tasks

\
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Metrics
Expressibility

Expressibility: The ability of the circuit to generate states that represent
the Hilbert space well

Low expressibility High expressibility

Circuit B

Idle circuit Circuit A

o} w

10} 1o}

yr ©y
x

1y 1}

Arbitrary unitary

0T

Dy, =430 Dy, =0.22 Dy, = 0.007

1.00 0.08
2075 20.06 B E‘ '
2 & a 8
‘€050 g0.04 & 5
e 2 g 0.01 g
025 == Haar 2 0.02 s Haar A A~

idle Uniformly sampled
000573 0.5 1.0 000575 0.5 0.00 0.5 .
Fidelity Fidelity Fidelity Fidelity

[S. Sim et al., Expressibility and entangling capability of parameterized quantum circuits for
hybrid quantum-classical algorithms, Adv. Quantum Technol. 2 (2019) 1900070]
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Time To Convergence

Maximum Reward
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0.70

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

[T.-A. Dragan, M. Monnet, C.B. Mendl, J.M. Lorenz, Quantum Reinforcement
Learning for Solving a Stochastic Frozen Lake Environment and the Impact of
Quantum Architecture Choices, arXiv:2212.07932].
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https://arxiv.org/abs/2212.07932

Conclusion

QC and QML is an emerging technology that is currently
developing fast.

Theoretical and academic quantum adavantage has been proven,

but the practical quantum advantage (also in HEP) remains to be
demonstrated.

On the way to the demonstration many questions to anwer:

= How to construct quantum circuits to obtain benefits?

= How to build the software stack and perform the integration of QC
into HPC systems to not lose an advantage again?

= Where will this new technology be useful in practise?

= How to deal with big data?
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