

BERGISCHE **UNIVERSITÄT** WUPPERTAL

Karl-Heinz Kampert Bergische Universität Wuppertal

High Energy Cosmic Ray and Multi-Messenger Astrophysics

Bundesministerium für Bildung und Forschung

BND Graduate School Wuppertal, 7.8 - 18.8. 2023

Multi-Messenger

Astrophysics

CR

GW

→ Measuring all of them is more than the sum of the individuals !

Adapted from Kumiko Kotera

Karl-Heinz Kampert – Bergische Universität Wuppertal

Conor Mow-Lowry's

Lectures

Overarching goal:

learn about the most powerful

accelerators in the Universe

Note, also particle physics experiments do not just measure pions only, or kaons, or protons....

 \mathcal{U}

0. Si...

1) The Big Picture: A quick overview 2) Astrophysics and Detection of E<10¹⁴ eV Galactic CRs (very brief) **3)** Detection of $E > 10^{14} eV$: Basic air shower phenomenology 4) Basic concepts and technologies of EAS experiments 5) Little bit of particle physics (hands on exercise) 6) Transition from galactic to extragalactic CRs **8)** Anisotropies: Hunting the UHECR sources 9) Multi-Messenger: Lessons and Prospects **10)** Related non-CR opportunities **11) UHECR future: challenges and prospects**

Karl-Heinz Kampert – University Wuppertal

Menu...

- 7) The end of the CR-spectrum: E_{max} of extragalactic accelerators?

The simple world of galactic CRs

Source: Stellar atmosphere, Nucleosynthesis... Accelerator: Supernovae?, Pulsars? ...

B-Field

µG scale

TeV e^{\pm}

Propagation:

Hadronic Interactions

Ironic interactions: e.g.
Ilation, anti-particles, ...
ioactive decays, ...

Synchrotron Rad.

Inverse Compton Scatt.

solar modulation

Detection at E<100 TeV: Ballon & Space born exp. EAS experiments

The simple world of extragalactic CRs

Powerful extragalactic Source

still expect CR hadronic interactions at the source

Karl-Heinz Kampert – Bergische Universität Wuppertal

no diffusion, but ballistic propagation CR interaction with background photons fields on 10-100 Mpc scale

nG scale

Milky Way

µG scale

The 3 High Energy Cosmic Messengers

p_{CR} + matter $\rightarrow \pi^{\pm} + \pi^{0} + X$ a/o radiation fields

proton

The 3+1 High Energy Cosmic Messengers CRs

Merging Binany Objects

GWs

 ${\cal V}$

proton

Karl-Heinz Kampert - University of Wuppertal

Cosmic Rays: the most energetic particles in the Universe

32 orders of magnitude:

hair

BND School, Wuppertal, August 2023

Karl-Heinz Kampert - University of Wuppertal

Cosmic Rays: the most energetic particles in the Universe

Fermi Acceleration of Cosmic Rays at Astrophysical Shocks

Karl-Heinz Kampert – Bergische Universität Wuppertal

This is called **1st order Fermi Acceleration**

and it results in a power-law energy spectrum

power-law index $\gamma = -2$ for monoatomic gases

Note the interplay of particles with cosmic magnetic fields: charged particles reflected by B-fields and B-fields get amplified by interactions with charged particles

ic propagation of the shock front into thin medium charged particles are confined near shock front and gain energy

- ... are very abundant in flux... ~ 300 particles/s/m²; ~20% of natural radioact. dose ... and energy density $\varepsilon_{CR} \approx 1 \text{ eV/cm}^3 \approx \varepsilon_{\text{star light}} \approx \varepsilon_{B-\text{field}} \text{ (galactic ecosystem)}$
- ... give information on properties of cosmic environment in which there are produced and through which they propagate • ... can be messengers of «new physics or yet unknown particles

• ... are evidence of most powerful astrophysical accelerators

... can be used to study the validity of physical laws in extreme condition

1) The Big Picture: A quick overview 2) Astrophysics and Detection of E<10¹⁴ eV Galactic CRs (very brief) 3) Detection of $E > 10^{14}$ eV: Basic air shower phenomenology 4) Basic concepts and technologies of EAS experiments 5) Little bit of particle physics (hands on exercise) 6) Transition from galactic to extragalactic CRs 8) Anisotropies: Hunting the UHECR sources 9) Multi-Messenger: Lessons and Prospects **10)** Related non-CR opportunities **11) UHECR future: challenges and prospects**

Karl-Heinz Kampert – University Wuppertal

Menu...

- 7) The end of the CR-spectrum: E_{max} of extragalactic accelerators?

Karl-Heinz Kampert - University of Wuppertal

ISS as Cosmic Ray Observatory

AMS Launch May 16, 2011

DAMPE (free flyer) launch December 2015

CALET Launch August 19, 2015

ICRC2019 Highlight Talk (CALET Y.Asaoka)

ISS-CREAM Launch August 14, 2017

6

based on Y. Asaoka, ICRC2019

BND School, Wuppertal, August 2023

CRC2019 August 2023

AMS 02: HEP Experiment in Space

TRD

Upper TOF

Lower TOF

RICY

ECA

Transition Radiation Detector (TRD) identify e⁺, e⁻

Silicon Tracker measure Z, P

Ring Imaging Cerenkov (RICH) measure Z, E

Karl-Heinz Kampert – Bergische Universität Trappertat

Electromagnetic Calorimeter (ECAL) measure E of e⁺, e⁻

Upper TOF measure **Z**, **E**

Magnet identify $\pm Z$, P

Anticoincidence Counters (ACC) reject particles from the side

Lower TOF measure Z, E -----

Weiwei Xu, ICRC2023 School, Wuppertal, August 2023

CALET

General principle:

- dE/dx (Bethe Bloch) $\propto Z^2/A$
- magnetic spectrometer $\propto p$
- calorimeter $\propto E$
- Time of Flight a/o Cherenkov a/o TRD \rightarrow v
- tracking \rightarrow direction

B. Bertucci, ICRC2019 Weiwei Xu, ICRC2023

Element-selected CR energy spectra (200 MeV - 1 PeV)

(GV)^{1.7}1

[m⁻²s⁻¹sr⁻¹

Ř^{2.7}

×

Flux

Figure 29.1: Fluxes of nuclei of the primary cosmic radiation in particles $p\epsilon$ energy-per-nucleus are plotted vs energy-per-nucleus using data from Refs. [2–1. The inset shows the H/He ratio at constant rigidity [2,4].

Karl-Heinz Kampert – Bergische Universität Wuppertal

A closer look...

CR composition as a tracer of propagation history

Karl-Heinz Kampert – Bergische Universität Wuppertal

BND School, Wuppertal, August 2023

ν and γ as a tracer of galactic CR interactions

The Supernova Paradigm

Integrating the cosmic ray energy spectrum \rightarrow CR energy density $\varepsilon_{CR} \approx 1 \,\mathrm{eV/cm}^3$

$$\Rightarrow E_{tot}^{CR} \approx \varepsilon_{CR} \times V_{gal}$$
$$\approx 1 \,\text{eV/cm}^3 \times \pi \times 15 \,\text{kpc}^2 \times 1 \,\text{kpc}$$
$$\approx 2 \cdot 10^{67} \,\text{eV}$$

Flux constant in time $\rightarrow E_{tot}^{CR}$ needs to be renewed every $\tau_{CR} \simeq 10$ Mio years

$$\Rightarrow L^{CR} \simeq \frac{E_{tot}^{CR}}{\ln 2 \cdot \tau_{CR}} \simeq \frac{2 \cdot 10^{67} \,\text{eV}}{10^7 \,\text{yrs}} \simeq 10^{53}$$

 $L_{solar} \simeq 3.86 \cdot 10^{33} \, \mathrm{erg/s}$ and only radiation, almost no particles

Supernovae: $L_{SN} \simeq 10^{53}$ erg total, (kinetic+optical) I SN per 30 years $-(10^{42} \text{ erg/s})$

$eV/s \simeq 1.6 \cdot 10^{41} erg/s$

30 kpc

21

The Supernova Paradigm

Integrating the cosmic ray energy spectrum \rightarrow CR energy density $\varepsilon_{CR} \approx 1 \, \text{eV/cm}^3$

$$\Rightarrow E_{tot}^{CR} \approx \varepsilon_{CR} \times V_{gal}$$
$$\approx 1 \,\text{eV/cm}^3 \times \pi \times 15 \,\text{kpc}^2 \times 1 \,\text{kpc}$$
$$\approx 2 \cdot 10^{67} \,\text{eV}$$

Flux constant in time $\rightarrow E_{tot}^{CR}$ needs to be renewed every $\tau_{CR} \simeq 10$ Mio years

$$\Rightarrow L^{CR} \simeq \frac{E_{tot}^{CR}}{\ln 2 \cdot \tau_{CR}} \simeq \frac{2 \cdot 10^{67} \,\text{eV}}{10^7 \,\text{yrs}} \simeq 10^{53}$$

 $L_{solar} \simeq 3.86 \cdot 10^{33} \, \text{erg/s}$ and only radiation, almost no particles

Supernovae: $L_{SN} \simeq 10^{53}$ erg total, (kinetic+optical) I SN per 30 years $-(10^{42} \text{ erg/s})$

Milky Way

1 kpc

<u>Cassiopeia A</u> SN at 2.8 kpc observed 1658 dynamics $\rightarrow 5 \cdot 10^{51}$ erg/s kinetic energy in filaments

30 kpc

January 19, 1934 Los Angeles Times

One of the most concise triple predictions ever made in science:

insert in one of the cosmic trips, entitled "Be Scientific with Ol'Doc Dabble" stated 'Cosmic Rays are caused by exploding stars which burn with a fire equal to 100 million suns and then shrivel from 1/2 million miles diameter to little spheres 14 miles thick' ... says Prof. Fritz Zwicky, Swiss Physicist

Anti-Particles in CRs: Signal of Dark Matter?

Stefano Gabici **ICRC 2023**

Anti-Particles in CRs: Signal of Dark Matter?

25

15

10

້າວ 20

S

Karl-Heinz Kampert – Bergische Universität Wuppertal

hot debate two weeks ago in Nagoya is it a break or a cut-off?

energy spectrum positrons

• 3.9x10⁶ e^+

Positrons from cosmic ray collisions

10

Positrons from new source or **Dark Matter**

100

Energy (GeV)

pulsars

DM

1000

BND School, Wuppertal, August 2023

1) The Big Picture: A quick overview 2) Astrophysics and Detection of E<10¹⁴ eV Galactic CRs (very brief) **3)** Detection of $E > 10^{14}$ eV: Basic air shower phenomenology 4) Basic concepts and technologies of EAS experiments 5) Little bit of particle physics (hands on exercise) 6) Transition from galactic to extragalactic CRs 8) Anisotropies: Hunting the UHECR sources 9) Multi-Messenger: Lessons and Prospects **10)** Related non-CR opportunities **11) UHECR future: challenges and prospects**

Karl-Heinz Kampert – University Wuppertal

Menu...

- 7) The end of the CR-spectrum: E_{max} of extragalactic accelerators?

Karl-Heinz Kampert - University of Wuppertal

indirect measurements by detection of extensive air showers π

π

ππ

p

 $\mathbf{\pi}$

π

π

π

ν

Extensive Air Showers (schematic)

π

π

μ

P Proton, energy E₀

π

ν

π

π

μ

Pions:

 $\pi^{\pm} : \tau_0 = 2.6 \cdot 10^{-8} \text{ s}$ $\pi^+ \rightarrow \mu^+ + \nu_{\mu}$

Myons: $\mu^{\pm}: \tau_0 = 2.2 \cdot 10^{-6} \text{ s}$ $\mu^{+} \rightarrow e^{+} + v_e + v_{\mu}$

particle detectors at found

Measurement Techniques of Air Showers

Karl-Heinz Kampert - Bergische Universität Wuppertal

Measurement of fluorescence light Measurement of

Measurement of low energy muons with scintillation or tracking detectors

George Zatsepin at work... 1946 at Pamir

Measurement Techniques of Air Showers

Extensive Air Showers (I): interaction lengths

Atmospheric Thickness:

1035 g/cm² $\approx 11 \lambda_{I}$ (hadr. interact. lengths) $\approx 27 X_{0}$ (radiation lengths)

Karl-Heinz Kampert - Bergische Universität Wuppertal

Extensive Air Showers (II): hadronic and muonic component

n=3

32

their decay into e[±] is of no relevance

Karl-Heinz Kampert - Bergische Universität Wuppertal

$$\pi^{0} \rightarrow \gamma\gamma \ (\tau_{0}=0.8 \cdot 10^{-16} \text{ s})$$

$$\pi^{\pm} \rightarrow \mu^{\pm} + \nu_{\mu} \ (\tau_{0}=26 \text{ ns})$$
Decay length of π^{\pm} :
$$R_{\pi} = \gamma \cdot v \cdot \tau_{0} \cong \frac{E_{\pi}^{tot}}{m_{0}c^{2}} \cdot c \cdot \tau_{0}$$
e.g.: $E_{\pi}=140 \text{ GeV} \Rightarrow R_{\pi} = 7.8 \text{ km}$

$$\lambda_{i} \text{ at 5 km height} \approx 1 \text{ km}$$
consequence:
in early shower, the hadronic
interaction of π^{\pm} is much more
probable than decay into muons
and vice versa in late showers

BND School, Wuppertal, August 2023

Extensive Air Showers (III): electromagnetic component

 \rightarrow e⁺ + e⁻ pair production

Y either directly from space or from $\pi^0 \rightarrow \gamma \gamma$ decay

$$e^+ \rightarrow e^+ + \gamma$$
 Bremsstrahlung
 $\downarrow \qquad \downarrow \qquad e^+ + e^-$
 $\downarrow \qquad e^+ + v$

processes repeat every ~X₀ ▷ particle number increases like

 $N_e \approx 2^n \approx 2^{X/X_0}$; $\langle E_e \rangle \approx E_0/2^{X/X_0}$

stops when

$$\left(\frac{dE}{dx}\right)_{ions} > \left(\frac{dE}{dx}\right)_{brems} \quad \text{i.e. at } \mathsf{E} < \mathsf{E}_{crit}$$

(critical energy ≈ 84 MeV in air)

Strictly, this Bethe-Heitler consideration applies only to pure em-showers !

Karl-Heinz Kampert - Bergische Universität Wuppertal

Extensive Air Showers (IV): em - general case

Pure electromagnetic case

empiric parametrisation, accounting also for fluctuations, by Gaisser-Hillas (1977)

$$N(X) = N_{max} \left(\frac{X - X_0}{X_{max} - X_0} \right)$$

Karl-Heinz Kampert - Bergische Universität Wuppertal

modifications for hadron induced EAS

- Ist interaction after hadronic interaction length λ_{P}
- Mean multiplicity N of hadrons O(10-100) \rightarrow average hadron energy $\approx E_0/N$
- Only fraction K_{ela} (elasticity) is used for secondary particle production

$$\rightarrow X_{max} \approx \lambda_p + X_0 \ln \left(\frac{\kappa}{2} \right)$$

KHK & Unger, APP35 (2012) 660

 $ela L_{($

$$(X_{max} - X_0)/\lambda$$

$$e^{(X_{max}-X)/\lambda}$$

N_{max}: No. of particles at shower maximum; X₀: point of 1st interaction; λ : width of distribution

BND School, Wuppertal, August 2023

Extensive Air Showers (IV): em → general case

Pure electromagnetic case

Karl-Heinz Kampert - Bergische Universität Wuppertal

modifications for hadron induced EAS

- Ist interaction after hadronic interaction length $\lambda_{p...Fe}$
- Mean multiplicity N of hadrons O(10-100) \rightarrow average hadron energy $\approx E_0/N$
- Only fraction K_{ela} (elasticity) is used for secondary particle production

$$\to X_{max} \approx \lambda_p + X_0 \ln\left(\frac{\kappa_{ela} E_0}{2NE_{crit}}\right)$$

KHK & Unger, APP35 (2012) 660

 $d\ln E_0$

Change of X_{max} with primary energy is called: elongation rate $\boldsymbol{\mathcal{L}}$

35

