
Frequency noise coupling in a Michelson interferometer

We will calculate how the output power of a Michelson interferometer using DC readout responds to both
length changes (eg from a gravitational wave) and to fluctuations in the laser frequency (frequency noise).
Consider a Michelson Interferometer with arms of length L1 and L2, and an input laser power of Pin. We define
the differential and common arm lengths as: Ld = L1−L2 and Lc = L1 +L2, equivalent to CARM and DARM
in LIGO. The original arm lengths are then:

L1 =
Lc + Ld

2
and L2 =

Lc − Ld

2
(1)

When calculating the response of an interferometer, experimentalists often use some shorthand notation
where the electric field amplitude is integrated over space and is normalised such that P = E∗E. The units
are now

√
W , and the phase can be related to the phase of a co-propagating plane wave. Ignoring the time

dependence of the electric field (all time terms are equal in this case), we can write our input electric field from
the laser as: Eine

ikL, where Ein =
√
Pin, the wavenumber k is related to the laser wavelength and frequency

by k = 2π/λ = 2πf/c, and L is the optical path length starting from the beamsplitter. Using the convention
that each transmission through a mirror gives a phase shift of i, and assuming perfectly reflective end mirrors,
we find that the electric field at the interferometer output is given by:

Eout = irtEine
i2kL1 + irtEine

i2kL2 (2)

where r =
√
R and t =

√
T are the (amplitude) reflectivity and transmissivity of the beamsplitter. Separating

this into common and differential lengths, we find:

Eout = irtEine
ikLc(eikLd + e−ikLd) (3)

The output power of the our interferometer is found by taking the modulus squared of the electric field (with
our shorthand notation):

Pout = E∗
outEout = r2t2Pin(2 + ei2kLd + e−i2kLd) (4)

=
Pin

2
(1 + cos (2kLd)) (5)

where we’ve assumed r2 = t2 = 0.5. We can see here that there is no dependence on the common arm length.
We can safely assume that fluctuations in laser frequency, δf , are much (much) smaller than the laser

frequency, f0. We can also assume that microscopic changes in arm length, δLd, for example from ‘detuning’ or
a gravitational wave, are very small compared with the static arm length difference Ld0. In LIGO the arm-length
difference is set to about 20 cm for technical reasons. Combining these:

kLd = (k0 + δk)(Ld0 + δLd) (6)

u k0Ld0 + k0δLd + δkLd0 (7)

The leading term, k0Ld0, defines both the macroscopic length and operating condition of our interferometer.
The second term is the ‘signal’, a phase change caused by mirror displacement, and the third is frequency
noise. For operation on a perfect ‘dark port’, this leading term is set to (m + 1/2)π. This is a problem since
the output will be quadratic with length. Instead, the interferometer is offset by a small ‘detuning’, β, where
(k0δLd + δkLd0) << β << π and k0Ld0 = (m+ 1/2)π + β, giving:

Pout =
Pin

2
[1− cos (2(β + k0δLd + δkLd0))] (8)

u Pin(β2 + 2β(k0δLd + δkLd0)) (9)

u Pin(β2 + 2βk0δLd +
4βπδfLd0

c
). (10)

We can clearly see that frequency fluctuations couple directly into the output power (our DARM channel), and
that they increase relative to the signal term proportional to the static arm length difference.
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