(recent developments in)

Flavour Physics

Wouter Hulsbergen (Nikhef)

Preliminary remarks

- lectures aimed at non-experts in flavour physics and CP violation
- apologies for those who are active in the field!
- "undemocratic" presentation
- experimental part focused on B-hadron physics
- missing a.o.: physics with kaons and D, electric-dipole moments, lepton-flavour violation, neutrinos, ...
- please interrupt!
- slides are more of 'guideline'

Reference material

- books
- Branco, Lavoura, Silva: "CP Violation"
- Bigi and Sanda: "CP Violation"
- ...
- lecture notes (from some of the greatest, certainly not a complete list)
- Y.Nir, "Flavour physics and CP Violation", https://arxiv.org/abs/1605.00433
- R. Fleischer, "B Physics and CP Violation", http://arxiv.org/abs/hep-ph/0210323v3
- A. Buras, "Flavour dynamics", http://arxiv.org/abs/hep-ph/0101336v1
- A. Lenz, https://www.tp.nt.uni-siegen.de/~lenz/Lecture_Flav_2021pdf
- Y. Grossman and P. Tanedo: https://arxiv.org/abs/1711.03624
- N. Tuning, "CP Violation", http://www.nikhef.nl/~h71/Lectures/2020/ppII-cpviolation-14022020.pdf

Course organization

- 4 lectures of 90 minutes
- ~60 minutes oral lecture 상
- ~30 minutes exercises https://github.com/wouterhuls/FlavourPhysicsBND2023/
- for the exercises need
- laptop, pen and paper
- access to Jupyter (your own installation, or Google Colab, SWAN, ...)
- ack's: heavily borrowed from slides by Niels Tuning and Marcel Merk

Flavour physics lectures (4×45 minutes)

1. Flavour in the Standard Model
2. Neutral meson mixing
3. CP violation + experiments
4. Rare decays + recent developments

Let's start with a few "Existential Questions" ...

Existential questions

- universe's basic building blocks: electron, proton, neutron and neutrino
- consider their masses
- neutrino: < 1 eV
- electron: 0.5 MeV
- proton: 938.27 MeV
- neutron: 939.57 MeV
- why is the proton lighter than the neutron?
- what if it would be heavier?
- what if the electron were $4 x$ heavier?

Existential questions

- universe's basic building blocks: electron, up-quark, down-quark and neutrino
- consider their masses
- neutrino: < 1 eV
- electron: 0.5 MeV
- up-quark: $\quad 2.2 \mathrm{MeV}^{*}$
- down-quark: 4.7 MeV*
- why is the up-quark lighter than the down-quark?
- what if it would be heavier?
- what if the electron were $4 x$ heavier?

See R.Cahn, The eighteen arbitrary parameters of the standard model in your everyday life Rev. Mod. Phys., Vol. 68, No. 3, (1996)

Existential questions

Existential questions

weak interaction quark mixing matrix

$$
\left|V^{\mathrm{CKM}}\right|=\left(\begin{array}{ccc}
0.974 & 0.225 & 0.004 \\
0.225 & 0.974 & 0.042 \\
0.009 & 0.0413 & 0.999
\end{array}\right)
$$

- why is the CKM matrix almost diagonal?
- is there a relation between the mass hierarchy and the weak mixing?
- why is mixing in the lepton sector so different?
- do neutrino masses have another source?

Existential questions

- why do we live in a matter dominated universe?

observation:

$$
\frac{n_{b}-n_{\bar{b}}}{n_{\gamma}} \approx 6 \cdot 10^{-10}
$$

SM prediction:

$$
\frac{n_{b}-n_{\bar{b}}}{n_{\gamma}} \approx 10^{-18}
$$

The Anthropic Principle?

- "What we observe is biased by our own existence." (Brandon Carter, '73)

- for the science, see e.g. (reference only, I didn't read them yet!)
- "The Anthropic Landscape of String Theory", L. Susskind (2003)
- "The Emperor's Last Clothes?", B. Schellekens (2008)

Explaining flavour?

- may never be able to 'understand' the 25+ parameters of the SM
- understanding 'why' may be a matter of showing that from all the $10^{\wedge} 500$ string vacua ours is not an unlikely one
- still want to understand the dynamic principles of our universe
- SM is not complete
- what is dark matter, energy, quantized gravity?
- what mechanism lead to a matter dominated universe?
- it is believed that electroweak symmetry breaking and flavour physics plays central role in some of these questions
- so ... let's embark on a tour of "flavour physics"!

An Al view

Flavour and the weak interaction

- EM and strong interaction 'conserve flavour'
- only weak interaction allows for flavourchanging transitions
- 'flavour physics' is physics of the weak interaction and electro-weak symmetry breaking

Why flavour physics?

- flavour observables are very sensitive to new physics at higher mass scales
- this holds in particular for 'mixing', 'CP violation' and 'rare decays'

Observable

Flavour physics: a tool for discovery

GIM mechanism in $\mathrm{K}^{0} \rightarrow \mu \mu$

$$
B^{0} \leftrightarrow \overline{B^{0}} \text { mixing }
$$

(courtesy: N. Tuning)

Is flavour physics `complicated’?

- less-intuitive concepts: imaginary phases, different bases, oscillations
- difficult computations
- lot's of Feynman diagrams
- bound states, non-perturbative QCD, approximate symmetries
- very extensive phenomenology
- e.g. PDG full of decay modes ("Beetokaipaigamma...")
- need to develop some intuition for what is interesting
-> aim: make you understand a little more on your next HEP conference!

DISCRETE SYMMETRIES

Symmetries

Nobel Laureate T.D. Lee:
"The root of all symmetry principles lies in the assumption that it is impossible to observe certain basic quantities; these will be called 'non-observables'."

symmetry

unobservable

conserved quantity

Symmetries

symmetry

A. permutation symmetries
B. continuous space time symmetries
C. discrete symmetries (C,P,T)
D. internal (or 'unitary') symmetries
example of unobservable

absolute identity of particle

absolute position, orientation, time
handedness, direction of time, definition of sign of charge
phase of a wave function

Emmy Noether: continuous symmetry (case $B, D) \rightarrow$ conservation law

Discrete symmetries

- suppose we watch some physical process. can we determine unambiguously whether or not ...
- we are watching the process where all charges are reversed ?
- we are watching the process through a mirror?
- we are watching the process in a film running backwards?
- \quad : charge conjugation

- T : time reversal

Discrete symmetries

- classical theories invariant under C, P, T operations
- Newton mechanics, Maxwell electrodynamics, QM
- it is said these "conserve C, P, T symmetry"
- CPT theorem:
"Lorentz invariant local quantum field theory with a Hermitian Hamiltonian must obey CPT symmetry"

Parity transformation

parity transformation \boldsymbol{P} : inversion of spatial coordinates

$$
\vec{x} \rightarrow-\vec{x}
$$

equivalent to: mirror transformation in one axis followed by 180 -degree rotation
\rightarrow often depicted by 'mirror'

```
THEMIRROR DHD NOT SEEM TO BE OPERATING PRORERLY.
```


Time evolution in Heisenberg picture

consider process: $\quad \phi_{i} \rightarrow \phi_{f}$

time evolution operator

Time evolution of mirror process

now consider the process in the mirror:

$$
\phi_{i}^{\prime}=\hat{P} \phi_{i}
$$

process is 'symmetric under P ' if applying parity transformation after timeevolution is leads to same result as applying it before

parity conservation:

$$
\hat{P} \hat{U} \phi_{i}=\hat{U} \hat{P} \phi_{i}
$$

$$
[\hat{P}, \hat{U}]=0 \Longleftrightarrow[\hat{P}, H]=0
$$

parity quantum number

operator commuted with $\mathrm{H} \rightarrow$ conserved quantum number

P and H have common set of eigenvectors with definite value for quantum number 'parity'
applying parity twice brings us back where we were:

Is 'parity' a good quantum number?

general assumption until 1956: "laws of physics symmetric under parity"
in math: $\quad[\hat{P}, H]=0$

$$
H=H_{\text {free }}+H_{\mathrm{EM}}+H_{\text {strong }}+H_{\text {weak }}
$$

well tested for electromagnetic and strong interaction (and gravity)
elementary particles must have 'definite parity'
but do they?

The theta-tau puzzle

- around 1950, observation of two weakly decaying states with different parity:

$$
\begin{aligned}
& \theta^{+} \rightarrow \pi^{+}+\pi^{0} \\
& \tau^{+} \rightarrow \pi^{+}+2 \pi^{0} \quad \text { or } \quad 2 \pi^{+}+\pi^{-}
\end{aligned}
$$

pion has odd parity \rightarrow

- theta has even parity
- tau has odd parity
- big puzzle: why do tau and theta have same mass and lifetime?
- Lee \& Yang in 1956:
simplest explanation: this is one and the same particle, but weak interaction violates parity symmetry
- quick experimental confirmation (Wu, Ledermann, ...)

C and P symmetry in the weak interaction

- weak interaction breaks \boldsymbol{C} and \boldsymbol{P} symmetry maximally
- W couples to left-handed particles and right-handed anti-particles
- how about combined CP symmetry?

CP symmetry

- "CP symmetry" for fundamental processes:

$$
\mathcal{P}(A \rightarrow B)=\mathcal{P}(\bar{A} \rightarrow \bar{B})
$$

- In 1964, Christenson, Cronin, Fitch and Turlay observed CP violation (CPV) in decays of neutral kaons
- can only properly explain their measurement tomorrow
- important for our story
- CP violation is essential ingredient to understanding matter-anti-matter asymmetry in universe ("Sacharov Conditions")
- in the SM it originates from non-trivial phases in Higgs Yukawa couplings

C and P quantum numbers in the PDG

https://pdglive.lbl.gov

$$
\pi^{ \pm} \quad I^{G}\left(J^{P}\right)=1^{-}\left(0^{-}\right)
$$

$$
\pi^{0} \quad I^{G}\left(J^{P C}\right)=1^{-}\left(0^{-+}\right)
$$

$J: \quad$ spin ('internal' angular momentum)
P : parity
C : charge conjugation
I : (strong) isospin
$G: \quad$ G-parity $\left(G=C e^{i \pi I_{2}}\right)$
rotation symmetry
discrete symmetries
(without $H_{\text {weak }}$)

SU(2) u <--> d symmetries (without H_{EM} and $H_{\text {weak }}$)

Discrete symmetry summary

- discrete symmetries: C, P, T
- CPT theorem: every reasonable theory obeys CPT symmetry
- strong and EW interaction are C, P and T symmetric
- weak interaction
- maximally violated P and C symmetry
- violates CP symmetry a little bit
- matter and anti-matter differ at the fundamental level

FLAVOUR IN THE STANDARD MODEL

Building the Standard Model

- ingredients to build renormalizable model

1. choose gauge symmetries
2. choose representation of matter fields under symmetries
3. choose pattern of symmetry breaking
4. add any other term that is renormalizable and does not break gauge invariance

- will introduce these concepts on next slides, though not exactly in this order

Step 1: massless fermion matter fields

- Dirac Lagrangian for set of massless fields

$$
\mathcal{L}_{\text {fermions }}=\sum i \bar{\psi}_{k} \gamma^{\mu} \partial_{\mu} \psi_{k} \quad \psi \in\left\{u_{i, \alpha}, d_{i, \alpha}, \ell_{i}, \nu_{i}\right\}
$$

- sum includes
- up quarks, down quarks, charged leptons, neutrinos
- 3 generations (or 'families')
- 3 versions of each quark (colour)
- independent left and right components for each field ("chiral theory")

Step 2: introduce gauge symmetry

- make doublets of the left-handed u / d fields

$$
Q_{i}=\binom{u_{L, i}}{d_{L, i}} \quad D_{i}=d_{R, i} \quad U_{i}=u_{R, i} \quad L_{i}=\binom{\nu_{L, i}}{\ell_{L, i}} \quad E_{i}=\ell_{R, i} \quad N_{i}=\nu_{R, i}
$$

- choose the gauge symmetry

$$
U(1)_{Y} \otimes S U(2)_{L} \otimes S U(3)_{\mathrm{c}}
$$

- choose the representation

field	$(\mathrm{c}, L)_{Y}$
Q^{I}	$(3,2)_{1 / 3}$
L^{I}	$(1,2)_{-1}$
u_{R}^{I}	$(3,1)_{4 / 3}$
d_{R}^{I}	$(3,1)_{2 / 3}$
ℓ_{R}^{I}	$(1,1)_{-2}$
ν_{R}^{I}	$(1,1)_{0}$

gauge transformations

- gauge transformation of Dirac fields

- principle of local gauge invariance:

$$
\mathcal{L}^{\prime}=\mathcal{L}
$$

add covariant derivatives \rightarrow gauge interactions

- introduce the covariant derivative (local gauge invariance)

$$
\partial^{\mu} \rightarrow D^{\mu} \equiv \partial^{\mu}+i g_{s} \sum_{a} G_{a}^{\mu} L_{a}+i g \sum_{b} W_{b}^{\mu} T_{b}+i g^{\prime} B^{\mu} Y
$$

G,W,B: gauge (vector) fields

L,T,B: symmetry group generators
g_{s}, g, g^{\prime} : universal coupling constants

- identical for quark/leptons (but some freedom in choosing Y)
- identical for all generations: flavour universality

add kinetic terms for gauge fields

- add kinetic terms for gauge bosons to complete Lagrangian

$$
\mathcal{L}_{\text {kinetic }}=\mathcal{L}_{\text {fermions }}+\mathcal{L}_{\text {gauge bosons }}+\mathcal{L}_{\text {interactions }}
$$

$$
\bar{\psi}\left(i \gamma^{\mu} \partial_{\mu}\right) \psi
$$

free massless fermions

$$
-\frac{g}{2} \bar{\psi} \gamma^{\mu} B_{\mu} Y \psi
$$

$$
-\frac{1}{4} F^{\mu \nu} F_{\mu \nu}
$$

interaction terms
free massless gauge fields

- up to this point fields are massless: mass terms break gauge invariance

mass terms?

- Dirac mass terms are

$$
\mathcal{L}_{\text {Dirac mass }}=-m \bar{\psi} \psi=-m\left(\bar{\psi}_{R} \psi_{L}+\bar{\psi}_{L} \psi_{R}\right)
$$

- break gauge symmetry because left- and right-handed components transform differently ('chiral theory')

Step 3: introduce symmetry breaking

- add scalar complex doublet (4 real degrees-of-freedom)

$$
\phi=\binom{\phi^{+}}{\phi^{0}} \quad \begin{aligned}
& \text { representation under gauge group: } \\
& (c, L)_{Y}=(1,2)_{+1}
\end{aligned}
$$

- give it a Mexican-hat mass-term: this does not break symmetry

$$
\mathcal{L}_{\mathrm{Higgs}}=\left(D^{\mu} \phi^{\dagger}\right)\left(D_{\mu} \phi\right)-V(\phi)
$$

$$
V(\phi)=\mu^{2} \phi^{\dagger} \phi+\lambda\left(\phi^{\dagger} \phi\right)^{2}
$$

Step 3: introduce symmetry breaking

- choose parameters such that ground state has 'broken symmetry'

$$
\mu^{2}>0
$$

$$
\mu^{2}<0
$$

- symmetry broken by vacuum expectation value ("vev")

$$
v=\sqrt{\frac{-\mu^{2}}{\lambda}}
$$

Step 3: introduce symmetry breaking

- from all possible ground states, choose one where φ^{0} has v.e.v.

$$
\binom{\phi^{+}}{\phi^{0}}=\frac{1}{\sqrt{2}}\binom{\xi_{1}+i \xi_{2}}{v+h+i \xi_{3}}
$$

v: constant Higgs 'vacuum expectation value'

$$
v=\sqrt{\frac{-\mu^{2}}{\lambda}}
$$

h: dynamic real neutral scalar Higgs field
ξ : 'eaten’ by $\operatorname{SU}(2)$ gauge bosons to give mass to $\mathrm{W}+, \mathrm{W}$ - and Z

Step 4: add anything else allowed

- add terms that
- do not break the gauge invariance
- are renormalizable
(this can be done before/after symmetry breaking: makes no difference)
- two kinds
- "Higgs Yukawa interactions"
- "Majorana neutrino mass" (Weinberg operator; will skip this)

Adding Yukawa interactions

$$
\Psi^{\prime}=e^{i \alpha(x) Y} e^{i \beta(x) T} e^{i \gamma(x) L} \Psi
$$

- one example: for right-handed down quarks

- to make this work it is essential that Higgs doublet has $Y=Y_{L}-Y_{R}=+1$

Adding Yukawa interactions

- all Yukawa terms (in compact form)

$$
\mathcal{L}_{\text {Yukawa }}=y_{i j}^{d} \bar{Q}_{i} \phi D_{j}+y_{i j}^{u} \bar{Q}_{i} \tilde{\phi}^{c} U_{j}+\text { (leptons) }+ \text { h.c. }
$$

- constraints from gauge symmetry:
- terms that 'mix' leptons and quarks break $U(1)_{\mathrm{y}}$
- terms that 'mix' families are fine!
- note: it is traditional to leave v_{R} term away (but not well motivated anymore!)

Yukawa terms after symmetry breaking

$$
\phi=\binom{\phi^{+}}{\phi^{0}} \rightarrow \frac{1}{\sqrt{2}}\binom{0}{v+h}
$$

mass term (but not diagonal)

Hqq coupling

- mass terms proportional to Yukawa couplings and vev:

$$
m_{i j}^{d} \equiv \frac{v}{\sqrt{2}} y_{i j}^{d}
$$

Mass eigenstates

- up to now Lagrangian written in terms of 'interaction eigen states'

$$
\mathcal{L}=\overline{Q_{i}^{I}}\left(i \gamma^{\mu} \partial_{\mu}\right) Q_{i}^{I} \quad-g \overline{Q_{i}^{I}} \gamma^{\mu}\left(\mathbf{W}_{\mu} \cdot \mathbf{T}\right) \overline{Q_{i}^{I}} \quad+y_{i j}^{d} \bar{Q}_{i}^{I} \phi D_{j}^{I} \quad+\ldots
$$

(have not been very consistent with the 'superscript l')

- if we scatter particles, compute things in terms of 'mass eigenstates'
- natural basis in QFT perturbation theory
- this means for us: diagonalize mass terms in Lagrangian

Diagonalizing mass matrices

- mass matrices

$$
m_{i j}^{u} \equiv \frac{v}{\sqrt{2}} y_{i j}^{u} \quad m_{i j}^{d} \equiv \frac{v}{\sqrt{2}} y_{i j}^{d} \quad m_{i j}^{\ell} \equiv \frac{v}{\sqrt{2}} y_{i j}^{\ell} \quad m_{i j}^{\nu} \equiv \frac{v}{\sqrt{2}} y_{i j}^{\nu}
$$

- diagonalizing mass matrix is same as diagonalizing Yukawa matrices: Higgs-fermion interactions are diagonalized simultaneously
- two important SM predictions:
- Higgs-fermion interaction strength is proportional to mass
- no mixing of fermions from Higgs-fermion coupling: no "Higgs-induced flavour changing neutral coupling ("FCNC")

Higgs FCNC

- "的 $\phi \mathrm{h}$ " terms couples mass eigenstates:

- no "Higgs induced flavour changing neutral couplings" (at tree level)

From your linear algebra course

- complex matrix \mathbf{M} can be decomposed as

$$
M=U_{L}^{\dagger} D U_{R} \quad \Leftrightarrow \quad D=U_{L} M U_{R}^{\dagger}
$$

U_{L}, U_{R} : unitary matrices
D: diagonal matrix

- decomposition is not unique
- by changing phases column/row of U : can choose D real and positive
- by re-arranging rows/columns of U : can choose order of diagonal elements

Diagonalizing mass matrix

- mass matrix:

$$
m_{i j}^{q}=\left(U_{L}^{q \dagger}\right)_{i k} \tilde{m}_{k l}\left(U_{R}^{q}\right)_{l j}
$$

diagonal, real, positive

- mass term in Lagrangian:

$$
\begin{aligned}
\mathcal{L}_{\mathrm{mass}}^{q} & =\bar{q}_{L, i}^{I} m_{i j}^{q} q_{R, j}^{I} \\
& =\bar{q}_{L, i}^{I}\left(U_{L}^{q \dagger}\right)_{i k} \tilde{m}_{k l}^{q}\left(U_{R}^{q}\right)_{l j} q_{R, j}^{I} \\
& \equiv \bar{q}_{L, i} \tilde{m}_{i j}^{q} q_{R, j}
\end{aligned}
$$

with "mass basis":

$$
\begin{aligned}
q_{L, i} & \equiv\left(U_{L}^{q}\right)_{i j} q_{L, j}^{I} \\
q_{R, i} & \equiv\left(U_{R}^{q}\right)_{i j} q_{R, j}^{I}
\end{aligned}
$$

How does this affect weak couplings?

$$
\begin{aligned}
\mathcal{L}_{\text {weak }} & =i g \sum_{i} \overline{Q_{i}^{I}} \gamma^{\mu}\left(\mathbf{W}_{\mu} \cdot \mathbf{T}\right) \overline{Q_{i}^{I}} \\
& =\ldots \\
& =i g \sum_{i}\left[\bar{u}_{L i}^{I} \gamma^{\mu} \frac{W_{\mu}^{+}}{\sqrt{2}} d_{L i}^{I}+\bar{d}_{L i}^{I} \gamma^{\mu} \frac{W_{\mu}^{-}}{\sqrt{2}} u_{L i}^{I}+\bar{d}_{L i}^{I} \gamma^{\mu} W_{\mu}^{0} d_{L i}^{I}+\bar{u}_{L i}^{I} \gamma^{\mu} W_{\mu}^{0} u_{L i}^{I}\right] \\
& \text { charged current } \quad \text { neutral current }
\end{aligned}
$$

- neutral weak current, and strong, and hypercharge: basis transformation has no effect!
- weak current: 'u-d' mix affected by basis transformation

The W^{+}interaction term

$$
\begin{aligned}
\mathcal{L}_{W^{+}+q q} & =\sum_{i} \bar{u}_{L, i}^{I}\left(\frac{i g}{\sqrt{2}} \gamma^{\mu} W_{\mu}^{+}\right) d_{L, i}^{I} \\
& =\sum_{i, k, l} \bar{u}_{L, k}\left(U_{L}^{u}\right)_{i k}\left(\frac{i g}{\sqrt{2}} \gamma^{\mu} W_{\mu}^{+}\right)\left(U_{L}^{d \dagger}\right)_{i l} d_{L, l} \\
& \equiv \sum_{i, j} \bar{u}_{L, i}\left(\frac{i g}{\sqrt{2}} \gamma^{\mu} W_{\mu}^{+}\right) V_{i j}^{C K M} d_{L, j}
\end{aligned}
$$

insert mass basis
combine U_R and U_L

- in last step defined "CKM matrix" $\quad V \equiv U_{L}^{u} U_{L}^{d \dagger}$

The W^{-}interaction term

- playing the same game for W - vertex:

$$
\mathcal{L}_{W^{-} q q}=\frac{i g}{\sqrt{2}} \sum_{i, j} \bar{d}_{L, i} \gamma^{\mu} W_{\mu}^{-} V_{i j}^{\dagger} \iota_{L, j}
$$

- note Hermitian conjugate (important when we start to compute things)

Other effects of basis transformation?

- strong interaction, hypercharges, neutral W?
- these are all of the form

$$
\mathcal{L}_{\mathrm{int}} \propto \sum_{i} \bar{\psi}_{L, i}^{I}(\text { "flavour diagonal" }) \psi_{L, i}^{I}+\bar{\psi}_{R, i}^{I}(\text { "flavour diagonal" }) \psi_{R, i}^{I}
$$

- no mix of up-down fields \rightarrow not affected
- how about the U_{R} matrices?
- do not appear in left-handed doublet interaction terms
- not visible in any of the singlet terms
- do not affect Lagrangian other than to diagonalize mass terms

Summary of flavour in the SM

- start from Lagrangian with flavour universal and diagonal interactions

$$
\boldsymbol{\mathcal { L }}_{W}=\frac{g}{\sqrt{2}} u_{L}^{\prime} \gamma_{\mu} W^{\mu} d_{L}^{\prime}
$$

- add Higgs interaction that are not flavour universal (because we can

$$
\boldsymbol{L}_{H}=Y_{i j}^{d}\left(\overline{u_{i}^{\prime}}, \bar{d}_{i}^{\prime}\right)_{L}\binom{0}{v} d_{j R}^{\prime}+Y_{i j}^{u}\left(\overline{u_{i}^{\prime}}, \overline{\bar{d}_{i}^{\prime}}\right)_{L}\binom{v}{0} u_{j R}^{\prime}
$$

- diagonalize the mass matrix (because we measure mass eigenstates)

$$
u_{i}=\left(V^{u}\right)_{i j} u_{j}^{\prime} \quad d_{i}=\left(V^{d}\right)_{i j} d_{j}^{\prime}
$$

- result: W interaction mixes families

Unitary?

- important assumption in this step:

$$
\begin{aligned}
\mathcal{L}_{W^{+} u d} & =\sum_{i, k, l} \bar{u}_{L, k}\left(U_{L}^{u}\right)_{i k} \sqrt{\left(\frac{i g}{\sqrt{2}} \gamma^{\mu} W_{\mu}^{+}\right)}\left(U_{L}^{d \dagger}\right)_{i l} d_{L, l} \\
& =\sum_{i, k, l} \bar{u}_{L, k}\left(\frac{i g}{\sqrt{2}} \gamma^{\mu} W_{\mu}^{+}\right)\left(U_{L}^{u}\right)_{i k}\left(U_{L}^{d \dagger}\right)_{i l} d_{L, l}
\end{aligned}
$$

- flavour universality: all SU(2) quark multiplets must have same coupling g
- if not, then V is not a unitary matrix: $\quad g V^{C K M} \rightarrow\left(U_{L}^{u}\right)_{i k} g_{k}\left(U_{L}^{d \dagger}\right)_{k j}$

"Down-quark rotation"

- it is customary to represent basis transformation as rotation of down quark states

$$
\left[\begin{array}{l}
\left|d^{\prime}\right\rangle \\
\left|s^{\prime}\right\rangle \\
\left|b^{\prime}\right\rangle
\end{array}\right]=\left[\begin{array}{lll}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right]\left[\begin{array}{l}
|d\rangle \\
|s\rangle \\
|b\rangle
\end{array}\right] .
$$

down quark states interacting with up quark mass eigenstates
down quark mass
eigenstates

- contrary to what you find in some texts, states on left are NOT interaction eigenstates: they are states interacting with up-quark mass eigenstates

"Mr. Osborne, may I be excused?
My brain is full."

"Cabibbo-Kobayashi-Maskawa matrix"

CP violation

- W^{+}and W^{-}terms represent CP-conjugate processes

- if $\boldsymbol{V}_{\boldsymbol{u} \boldsymbol{d}}$ is not real, then corresponding amplitudes have different coupling
- Kobayashi and Maskawa (1970)
- need at least 3 generation to have non-trivial complex element in V^{ckm}
- by adding $3^{\text {rd }}$ generation, can explain CP-violation in Kaon decays!
"physical non-zero phase" $=$ "this theory is $C P$ violating."

Flavour changing interactions

- charged weak interactions leads to flavour transition through CKM matrix

- we `measure’ CKM matrix by studying these interactions

Example: extracting Vus

Feynman diagram

$$
K^{0} \rightarrow \pi^{-} e^{+} \nu_{e}
$$

1. measure branching fraction
2. compare to prediction to extract Vus

- main difficulty: quarks only appear in bound states!
- $\quad \rightarrow$ theoretical developments in quark flavour physics are mostly about dealing with 'hadronic effects'

The 'Flavour Puzzle'

- unexplained structure: CKM matrix is almost diagonal

$$
V=\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right) \sim\left(\begin{array}{ccc}
\square & \square & \cdot \\
\square & \square & \cdot \\
\cdot & \square & \square
\end{array}\right)
$$

- remember: quark order is choice \rightarrow ordered quarks by mass
- flavour puzzle: are mass hierarchy and CKM hierarchy related?

CKM matrix parametrization

- CKM matrix is 3×3 unitary matrix

$$
V \equiv U_{L}^{u} U_{L}^{d \dagger}
$$

- how many physical parameters?
- generic unitary 3×3 matrix: 9 real parameters
- relative phase between quark fields unphysical: 4 parameters left
- usually parametrized with $\mathbf{3}$ angles and 1 complex phase

$$
V_{C K M}=\left(\begin{array}{ccc}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
c_{13} & 0 & s_{13} e^{-i \delta_{13}} \\
0 & 1 & 0 \\
-s_{13} e^{i \delta_{13}} & 0 & c_{13}
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{array}\right)
$$

- Kobayashi-Maskawa phase $\boldsymbol{\delta}$ is (the) source of CPV in quark sector of SM

CKM matrix parametrization

- current values of parameters (actually 2015)

$$
\begin{aligned}
\sin \theta_{12} & =0.22497 \pm 0.00069 \\
\sin \theta_{23} & =0.04229 \pm 0.00057 \\
\sin \theta_{13} & =0.00368 \pm 0.00010 \\
\delta\left[^{\circ}\right] & =65.9 \pm 2.0
\end{aligned}
$$

- note:
- mixing angles are small
- complex phase is large

Wolfenstein parametrization

- observed structure exploited by "Wolfenstein parametrization"

$$
\begin{aligned}
\sin \theta_{12} & =0.22497 \pm 0.00069 \\
\sin \theta_{23} & =0.04229 \pm 0.00057 \\
\sin \theta_{13} & =0.00368 \pm 0.00010 \\
\delta\left[^{\circ}\right] & =65.9 \pm 2.0 .
\end{aligned}
$$

$$
\begin{array}{ll}
s_{12} & \equiv \lambda \\
s_{23} & \equiv A \lambda^{2} \\
s_{13} e^{-i \delta} & \equiv A \lambda^{3}(\rho+i \eta)
\end{array}
$$

$V=\left(\begin{array}{ccc}1-\lambda^{2} / 2 & \lambda & A \lambda^{3}(\rho-i \eta) \\ -\lambda & 1-\lambda^{2} / 2 & A \lambda^{2} \\ A \lambda^{3}(1-\rho-i \eta) & -A \lambda^{2} & 1\end{array}\right)+\mathcal{O}\left(\lambda^{4}\right)$

- amplitudes usually involve several CKM elements: expansion in powers of $\boldsymbol{\lambda}$ is useful to see which combinations are large

Jarlskog invariant

- amount of CP violation can be represented by "Jarlskog Invariant"

no index summation

- in standard parametrization:

$$
J=c_{12} c_{23} c_{13}^{2} s_{12} s_{23} s_{13} \sin \delta_{\mathrm{KM}} \approx \lambda^{6} A^{2} \eta \sim 0.00003
$$

Unitary triangles

- CKM matrix is unitary: leads to 6 'orthogonality relations', e.g.

$$
\sum_{i=1}^{3} V_{i d} V_{i s}^{*}=0
$$

- zero sum of three numbers represented by triangle in complex plane:

homework exercise: surface of all 6 unitary triangles is equal to Jarlskog invariant!

The unitary triangle

- only one of the 6 triangles has all sides of about equal sides:

$$
V_{u b}^{*} V_{u d}+V_{c b}^{*} V_{c d}+V_{t b}^{*} V_{t d}=0
$$

$$
\alpha=\arg \left[-\frac{V_{t d} V_{t b}^{*}}{V_{u d} V_{u b}^{*}}\right] \quad \beta=\arg \left[-\frac{V_{c d} V_{c b}^{*}}{V_{t d} V_{t b}^{*}}\right] \quad \gamma=\arg \left[-\frac{V_{u d} V_{u b}^{*}}{V_{c d} V_{c b}^{*}}\right]
$$

The unitary triangle

- it is customary to divide all sides by (-Vcd Vcb*):
apex of triangle corresponds
(almost) to Wolfenstein parameters eta and rho

Testing the Standard Model

- unitary triangle: visualize consistency of SM

Summary of quark flavour in the SM

How about leptons?

- Yukawa term for leptons looks the same as for quarks:

$$
\mathcal{L}_{\text {Yukawa, leptons }}=y_{i j}^{\ell} \bar{L}_{i}^{I} \phi \ell_{R, j}^{I}+y_{i j}^{\nu} \bar{L}_{i}^{I} \tilde{\phi}^{c} \nu_{R, j}^{I}+\text { h.c. }
$$

- after symmetry breaking, perform similar basis transformation, but ...
- customary: make different choice than for quarks
- (most) scattering experiments do not measure neutrino type
- choose charged-lepton mass matrix diagonal
- choose charged weak interaction diagonal
- \rightarrow neutrino-mass matrix not diagonal

Choice of basis for lepton fields

quark basis choice

$$
\begin{gathered}
\mathcal{L}_{W q q}=\frac{g}{\sqrt{2}} \bar{u}_{L} i \gamma_{\mu}\left(V_{u L} V_{d L}^{\dagger}\right) d_{L} W^{\mu} \\
\text { not diagonal }
\end{gathered}
$$

$$
\mathcal{L}_{\mathrm{mass}, q}=\tilde{m}_{i j}^{d} \bar{d}_{L}^{i} d_{R}^{j}+\tilde{m}_{i j}^{u} \bar{u}_{L}^{i} u_{R}^{j}
$$

lepton basis choice

$$
\begin{gathered}
\mathcal{L}_{W q q}=\frac{g}{\sqrt{2}} \bar{u}_{L} i \gamma_{\mu}\left(V_{u L} V_{d L}^{\dagger}\right) d_{L} W^{\mu} \\
\uparrow \\
\text { diagonal }
\end{gathered}
$$

$$
\mathcal{L}_{\mathrm{mass}, q}=\tilde{m}_{i j}^{d} \bar{d}_{L}^{i} d_{R}^{j}+\tilde{m}_{i j}^{u} \bar{u}_{L}^{i} u_{R}^{j}
$$

diagonal

- note: there is no physics in the choice of basis

The PNMS matrix

- Pontecorvo-Maki-Nakagawa-Sakata matrix
states interacting with charged lepton mass eigenstates
$\left[\begin{array}{l}\nu_{e} \\ \nu_{\mu} \\ \nu_{\tau}\end{array}\right]=\left[\begin{array}{ccc}U_{e 1} & U_{e 2} & U_{e 3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3}\end{array}\right]\left[\begin{array}{l}\nu_{1} \\ \nu_{2} \\ \nu_{3}\end{array}\right]$
- completely different hierarchy from quark mixing matrix

$$
\left|U^{P M N S}\right|=\left(\begin{array}{lll}
0.82 & 0.55 & 0.15 \\
0.37 & 0.58 & 0.70 \\
0.39 & 0.59 & 0.69
\end{array}\right)
$$

Sakharov conditions (1967)

- to create "net matter excess" need

1. baryon number violating processes
such that n (baryon) - n(anti-baryon) not constant
2. $\quad C$ and $C P$ violating processes because of CP is conserved then for the process in 1 the CPconjugated process has the same rate
3. non-thermal equilibrium because otherwise the reaction in 1 will be balanced by inverse reaction

1,000,000,001

particles

universe cools down

1,000,000,000
anti-particles

Baryogenesis Puzzle - Electroweak Baryogenesis?

Exercises

- see README.md file at
https://github.com/wouterhuls/FlavourPhysicsBND2023/
- now: exercises 1-4
- this is probably too much for 30 minutes. proposal:
- make your pick
- at least try this simple workbook exercise: particledatatable.ipynb
- then I know if 'technically', we can run the more complicated workbooks as well

