LECTURE 4: RARE DECAYS

Learning goals

- what are rare decays?
- sketch of theory of rare decays
- some 'recent' highlights in rare B decays
- Bs->mumu
- Bd->K*gamma
- lepton-flavour violation tests

Standard Model: "No FCNC at tree level"

CKM: Flavour changing charged currents

No Flavour changing neutral currents

FCNC at loop level

- neutral currents are possible at higher order

- we call them 'rare'
- higher order
- often 'GIM suppressed' (cancellation due to unitarity)

Examples of rare decays

- very incomplete table

transition	example of decays
$b \rightarrow s \gamma$	$B^{0} \rightarrow K^{* 0} \gamma$
$b \rightarrow s \ell^{+} \ell^{-}$	$B_{s} \rightarrow \mu^{+} \mu^{-}, B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}, B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}$
$b \rightarrow s q \bar{q}$	$B_{d} \rightarrow K \pi, B_{s} \rightarrow \phi \pi$
$b \rightarrow d \ell^{+} \ell^{-}$	$B^{0} \rightarrow \rho^{0} \mu^{+} \mu^{-}, B_{d} \rightarrow \mu^{+} \mu^{-}$
$s \rightarrow d \gamma$	$K_{L} \rightarrow \gamma \gamma$
$s \rightarrow d \ell^{+} \ell^{-}$	$K_{L} \rightarrow \mu^{+} \mu^{-}, K_{L} \rightarrow \pi^{0} e^{+} e^{-}, K^{+} \rightarrow \pi^{0} \mu^{+} \mu^{-}$
$s \rightarrow d \nu \bar{\nu}$	$K_{L} \rightarrow \pi^{0} \nu \bar{\nu}, K^{+} \rightarrow \pi^{+} \nu \bar{\nu}$

- branching fractions typically smaller than $\sim 10^{-5}$, some much much smaller

Effective couplings

- Beta decay: "charged current":

$$
\mathcal{M}=\left[\frac{g V_{u d}}{\sqrt{2}} \bar{L}_{L} \gamma^{\mu} d_{L}\right] \frac{g_{\mu \nu}-p_{\mu} p_{\nu} / M_{W}^{2}}{p^{2}-M_{W}^{2}}\left[\frac{g}{\sqrt{2}} \bar{e}_{L} \gamma^{\nu} \nu_{L}\right]
$$

$$
\mathcal{M}=\frac{V_{u d} G_{F}}{\sqrt{2}}\left[\bar{u}_{L} \gamma^{\mu} d_{L}\right]\left[\bar{e}_{L} \gamma_{\mu} \nu_{L}\right]
$$

Effective theory: exploit separation of scales

Effective couplings

- Beta decay: "charged current":

$$
n \rightarrow p e^{-} \overline{v_{e}}
$$

- Rare B decay: "Flavour changing neutral current":
$B^{0} \rightarrow K^{*} \mu^{+} \mu^{-}$

Dealing with bound states

- consider " $B \rightarrow D l v$ "
quark level process

$$
\mathcal{A}(i \rightarrow f)=\langle f| \mathcal{H}|i\rangle
$$

$$
\Gamma(i \rightarrow f)=\int|\mathcal{A}(i \rightarrow f)|^{2} \mathrm{~d}(\text { phase space })
$$

$$
\mathcal{A}(b \rightarrow c \ell \bar{\nu})=\frac{G_{F}}{\sqrt{2}} V_{c b}\left[\bar{\ell} \gamma^{\mu}\left(1-\gamma^{5}\right) \nu\right]\left[\bar{c} \gamma_{\mu}\left(1-\gamma^{5}\right) b\right]
$$

Dealing with bound states

- consider " $B \rightarrow D l v$ "
quark level process

$$
\mathcal{A}(b \rightarrow c \nmid \bar{\nu})=\frac{G_{F}}{\sqrt{2}} V_{c b}\left[\bar{\ell} \gamma^{\mu}\left(1-\gamma^{5}\right) \nu\right]\left[\bar{c} \gamma_{\mu}\left(1-\gamma^{5}\right) b\right]
$$

hadron level process

$$
\mathcal{A}\left(B^{0} \rightarrow D^{+} \ell \bar{\nu}\right)=\left\langle D^{+} \ell \bar{\nu}\right| \mathcal{H}\left|B^{0}\right\rangle=?
$$

Dealing with bound states

- sketch of solution (no formal theory!)

$$
\mathcal{A}\left(B^{0} \rightarrow D^{+} \ell \bar{\nu}\right)=\underbrace{\frac{G_{F}}{\sqrt{2}} V_{c b} \times\left\langle D^{+} \ell \bar{\nu}\right|\left[\bar{\ell} \gamma^{\mu}\left(1-\gamma^{5}\right) \nu\right]\left[\bar{c} \gamma_{\mu}\left(1-\gamma^{5}\right) b\right]\left|B^{0}\right\rangle}
$$

coefficient:

- can be computed in SM
local operator:
- computation involves QCD

General solution: operator product expansion

- approximate H with effective Hamiltonian that integrates out 'all heavy stuff', not just the W, but also the top, etc

$$
\mathcal{A}(i \rightarrow f)=\langle f| \mathcal{H}|i\rangle \rightarrow\langle f| \mathcal{H}_{\text {eff }}|i\rangle
$$

"short distance" Wilson coefficient:

- stuff having to do with scales $>\mu$
local operator:
- stuff having to do with scales $<\mu$

General solution: operator product expansion

$$
\mathcal{A}(i \rightarrow f)=\frac{G_{F}}{\sqrt{2}} \sum_{i} \underbrace{V_{i}^{\mathrm{CKM}} C_{i}(\mu)}\langle f| O_{i}(\mu)|i\rangle
$$

"short distance" Wilson coefficient:

- perturbative: SM computation 'easy'
- sensitive to New Physics
"long distance" matrix element
- non-perturbative: difficult
- not sensitive to New Physics
- Wilson coefficients and matrix elements depend on scale 'mu'
- computations need to 'match', such that mu-dependence cancels
- matrix elements are hard to compute but effective approximations available: "heavy quark effective theory", "lattice calculations", etc

Rare B-decays and effective couplings: $b \rightarrow s q \bar{q}$

 operator \mathcal{O}_{2}

(a)

(b)
(c)

(c) QCD penguin operators \mathcal{O}_{3-6}

Rare B-decays and effective couplings: $b \rightarrow s l^{+} l^{-}$

Effects of 'new physics'

$$
\mathcal{A}(i \rightarrow f)=\frac{G_{F}}{\sqrt{2}} \sum_{i} V_{i}^{\mathrm{CKM}} C_{i}(\mu)\langle f| O_{i}(\mu)|i\rangle
$$

- new 'heavy' particles only affect scales > mu
- \rightarrow change Wilson coefficients
- new physics may also lead to local operators that are absent in SM
- e.g. with scalar bosons or right-handed currents
- lead to different 'kinematics' of final state particles

Very rare! $\mathcal{B} \lesssim 10^{-9}$

- Theoretically clean
- Mostly clean to reconstruct Sensitive mainly to $\mathcal{C}_{10}^{\left({ }^{(}\right)}$.

Quite rare, $\mathcal{B} \sim 10^{-6}$

- Hadronic pollution.
- Mostly clean to reconstruct.
- Electron reconstruction very challenging.
Sensitive to $\mathcal{C}_{7}^{\left({ }^{\prime}\right)}, \mathcal{C}_{9}^{\left({ }^{\prime}\right)}$ and $\mathcal{C}_{10}^{\left({ }^{\prime}\right)}$ depending on $q^{2} \equiv m_{\ell^{+} \ell^{-}}^{2}$ region.

Fairly rare, $\mathcal{B} \sim 10^{-5}$

- Similar to semi-leptonic.
- Experimental resolution not great.

Sensitive to $\mathcal{C}_{7}^{\left({ }^{\prime}\right)}$.

Rare B-decays and effective couplings: $b \rightarrow s \mu^{+} \mu^{-}$

- Effective 4-fermion coupling:

$$
\mathcal{H}_{e f f}=-\frac{4 G_{F}}{\sqrt{2}} V_{t b} V_{t s}^{*} \sum_{i=1}^{10} \mathcal{C}_{i} \mathcal{O}_{i}
$$

- Standard Model diagrams:

- Beyond Standard Model:

- Experimental test: Compare calculable C_{i} coefficients to experimental data
- Sensitivity for NP in Wilson coefficients C_{7}, C_{9}, C_{10}

$B_{s, d} \rightarrow \mu^{+} \mu^{-}$

- very rare decay in SM: FCNC, helicity suppressed
- precise SM calculation (update!)

$$
\begin{aligned}
& B\left(B_{S}^{0} \rightarrow \mu^{+} \mu^{-}\right)=(3.66 \pm 0.14) \times 10^{-9} \\
& B\left(B^{0} \rightarrow \mu^{+} \mu^{-}\right)=(1.03 \pm 0.05) \times 10^{-10} \\
& \text { PRL 112 (2014) } 101801 \\
& \text { JHEP 10(2019) } 232
\end{aligned}
$$

- considered very sensitive to new physics (SUSY etc)
- "clean/easy" experimental signature: just count!

$B_{s, d} \rightarrow \mu^{+} \mu^{-}$

- observed signals at the LHC:

- note the importance of good mass resolution!

$$
B_{s, d} \rightarrow \mu^{+} \mu^{-}
$$

- good agreement between experiment and theory
- non-SM contributions not much more than 15\%
- \rightarrow strong contraints on BSM physics
- no clear evidence yet for Bd-> $\mu \mu$

$B_{d} \rightarrow K^{* 0} \mu^{+} \mu^{-}$(and alike)

- invariant mass-squared of $\mu \mu$ pair is called "q-squared":

$$
q^{2}=\left|p^{\mu}\left(\ell^{+}\right)+p^{\mu}\left(\ell^{-}\right)\right|^{2}
$$

Contribution of operators depends on q^{2}

Branching fractions of Rare Decays: $b \rightarrow s \mu^{+} \mu^{-}$

- Branching fractions related to $b \rightarrow s \mu^{+} \mu^{-}$transition consistently lower than predicted.

Angular distributions

- in >2-body decays, also "angular distributions" sensitive to NP

- experimental challenge: backgrounds and angular efficiency
- theoretical challenge: choose observables with small hadronic uncertainties

Example: angular distributions in $B^{0} \rightarrow K^{* 0} \mu \mu$

not great agreement with SM prediction

Global Fit of $b \rightarrow s \mu^{+} \mu^{-}$

different theoretical

- global fits: perform fits so all b->sll data, allowing for NP contributions to Wilson coefficients
- the fit seems to indicate new contributions to 'C9'
- the 'pull' of the SM is about 4 sigma

Lepton universality

- SM: all leptons have 'universal couplings'
- well tested with $W^{ \pm} \rightarrow l^{ \pm} v$ and $Z^{0} \rightarrow l^{+} l^{-}$(e.g. at LEP and SLC)
for example, branching fractions of Z to leptons from PDG:

Γ_{1}	$e^{+} e^{-}$	${ }^{[1]}$	$(3.3632 \pm 0.0042) \%$
Γ_{2}	$\mu^{+} \mu^{-}$	${ }^{[1]}$	$(3.3662 \pm 0.0066) \%$
Γ_{3}	$\tau^{+} \tau^{-}$	${ }^{[1]}$	$(3.3696 \pm 0.0083) \%$

- meson decays provide additional tests, e.g. sensitivity to new forces between quarks and leptons ("lepto-quarks")

B-decays and lepton universality

- $b \rightarrow c l v$ charged current: "Allowed" \rightarrow large decay rates

$$
\begin{aligned}
R_{D} & =\frac{B \rightarrow D \tau v}{B \rightarrow D \mu \nu} \\
R_{D^{*}} & =\frac{B \rightarrow D^{*} \tau v}{B \rightarrow D^{*} \mu v}
\end{aligned}
$$

- $b \rightarrow s l^{+} l^{-}$neutral current: "Forbidden" \rightarrow rare decays

$$
\begin{aligned}
& a \\
& b \xrightarrow[\mu^{-} / e^{-}]{R_{K^{*}}=\frac{B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}}{B^{0} \rightarrow K^{* 0} e^{+} e^{-}}}
\end{aligned}
$$

R_{D} and $R_{D^{*}}$

- $\quad b \rightarrow c l v$ allowed charged current (tree level)

$$
R\left(D^{(*)}\right)=\frac{B R\left(B \rightarrow D^{(*)} \tau v\right)}{B R\left(B \rightarrow D^{(*)} \mu \nu\right)}
$$

\rightarrow Involves leptons of $2^{\text {nd }}$ and $3^{\text {rd }}$ generation

R_{K} and $R_{K^{*}}$

- $b \rightarrow s l^{+} l^{-} \quad$ suppressed neutral current
$R(K)=\frac{B R\left(B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}\right)}{B R\left(B^{+} \rightarrow K^{+} e^{+} e^{-}\right)}$
$R\left(K^{*}\right)=\frac{B R\left(B^{0} \rightarrow K^{*} \mu^{+} \mu^{-}\right)}{B R\left(B^{0} \rightarrow K^{*} e^{+} e^{-}\right)}$

OLD

- latest LHCb results are perfectly Fompatiblepvithsexpectation asd generation

R_{K} and $R_{K^{*}}$
- $b \rightarrow s l^{+} l^{-}$suppressed neutral current
$R(K)=\frac{B R\left(B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}\right)}{B R\left(B^{+} \rightarrow K^{+} e^{+} e^{-}\right)}$
$R\left(K^{*}\right)=\frac{B R\left(B^{0} \rightarrow K^{*} \mu^{+} \mu^{-}\right)}{B R\left(B^{0} \rightarrow K^{*} e^{+} e^{-}\right)}$
\rightarrow Involves leptons of $1^{\text {st }}$ and $2^{\text {nd }}$ generation
- situation until 2022: >3 sigma deviation from expectation

Underestimated background:

R_{K} and $R_{K^{*}}$

- $b \rightarrow s l^{+} l^{-}$suppressed neutral current

$$
\begin{aligned}
& R(K)=\frac{B R\left(B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}\right)}{B R\left(B^{+} \rightarrow K^{+} e^{+} e^{-}\right)} \\
& R\left(K^{*}\right)=\frac{B R\left(B^{0} \rightarrow K^{*} \mu^{+} \mu^{-}\right)}{B R\left(B^{0} \rightarrow K^{*} e^{+} e^{-}\right)}
\end{aligned}
$$

\rightarrow Involves leptons of $1^{\text {st }}$ and $2^{\text {nd }}$ generation

- situation today : good agreement with expectation in this observable

why we should keep testing "Lepton universality"

Suppose we could test matter only with long wave-length photons...
$\xrightarrow[\gamma]{\mathrm{U}(1)_{\mathrm{Q}}} \underset{\sim}{\text { We would conclude that these two particles are }}$

This is exactly the same (potentially misleading) argument we use to infer LFU in the SM...

The SM quantum numbers of the three families could be an "accidental" low-energy property: the different families may well have a very different behavior at high energies, as signaled by their different mass

- Implications for low-energy flavor physics

If the anomalies are due to NP, we should expect to see several other BSM effects in low-energy observables
E.g.: correlations among down-type FCNCs [using the results of $\mathrm{U}(2)$-based EFT]:

	$\mu \mu$ (ee)	$\tau \tau$	vV	$\tau \mu$	$\mu \mathrm{e}$
$\mathrm{b} \rightarrow \mathrm{s}$	$\begin{aligned} & \mathrm{R}_{\mathrm{K}}, \mathrm{R}_{\mathrm{K} *} \\ & \mathrm{O}(20 \%) \end{aligned}$	$\begin{gathered} \mathrm{B} \rightarrow \mathrm{~K}^{(*)} \tau \tau \\ \rightarrow 100 \times \mathrm{SM} \end{gathered}$	$\begin{gathered} \mathrm{B} \rightarrow \mathrm{~K}^{(*)} \mathrm{vv} \\ \mathrm{O}(1) \end{gathered}$	$\begin{gathered} \mathrm{B} \rightarrow \mathrm{~K} \tau \mu \\ \rightarrow \sim 10^{-5} \end{gathered}$	$\mathrm{B} \rightarrow \mathrm{K} \mu \mathrm{e}$???
$\mathrm{b} \rightarrow \mathrm{d}$	$\begin{aligned} & \mathrm{B}_{\mathrm{d}} \rightarrow \mu \mu \\ & \mathrm{~B} \rightarrow \pi \mu \mu \\ & \mathrm{~B}_{\mathrm{s}} \rightarrow \mathrm{~K}^{(*)} \mu \mu \\ & \mathrm{O}(20 \%)\left[\mathrm{R}_{\mathrm{K}}=\mathrm{R}_{\pi}\right. \end{aligned}$	$\begin{gathered} \mathrm{B} \rightarrow \pi \tau \tau \\ \rightarrow 100 \times \mathrm{SM} \end{gathered}$	$\begin{gathered} \mathrm{B} \rightarrow \pi v v \\ \mathrm{O}(1) \end{gathered}$	$\begin{aligned} & \mathrm{B} \rightarrow \pi \tau \mu \\ & \rightarrow \sim 10^{-7} \end{aligned}$	$\mathrm{B} \rightarrow \pi \mu \mathrm{e}$???
$\mathrm{s} \rightarrow \mathrm{d}$	long-distance pollution	$N A$	$\begin{gathered} \mathrm{K} \rightarrow \pi \mathrm{vv} \\ \mathrm{O}(1) \end{gathered}$	NA	$K \rightarrow \mu \mathrm{e}$ \square ???

S. Fajfer, ICHEP2018

Models at TeV scale explaining both B anomalies

Scalar LQ as pseudo-Nambu-Goldstone boson

Gripaios et al, 1010.3962,
Gripaios et al., 1412.1791, Marzocca 1803.10972...

Models with scalar LQs

Hiller \& Schmaltz, 1408.1627, Becirevic et al. 1608.08501, SF and Kosnik, 1511.06024, Becirevic et al., 1503.09024, Dorsner et al, 1706.07779, Cox et al., 1612.03923, Crivellin et al.,1703.09226.
W^{\prime}, Z^{\prime} in warped space
Megias et al.,1707.08014

Vector resonances (from techni-fermions)

Barbieri et al.,1506.09201, Buttazzo et al. 1604.03940,

Barbieri et al., 1611.04930
Blanke \& Crivellin, 1801.07256, ..

Gauge bosons

Greljo et al., 1804.04642
Cline, Camalich, 1706.08510
Calibbi et al.,1709.00692
Assad et al., 1708.06350
Di Luzio et al.,1708.08450
Bordone et al.,1712.01368, 1805.09328...

Some of the things that I did not
 Scale [TeV]

흥

- CP violation and rare decays in the Kaon sector
- lepton-number violation (e.g. $\mu \rightarrow e \gamma, \mu \rightarrow e e e)$
- electric dipole moments
- g-2
- majorana neutrinos

Closing remarks

- low energy measurements can be sensitive to very high mass scales
- several 'quark flavour physics' measurements show tension with SM predictions
- experimental effects?
- theoretical understanding?
- new physics?
\rightarrow Belle-II/LHC measurements will improve a lot over coming decade
- lot's of other exciting experiments ongoing: watch tight!

