# **LECTURE 4: RARE DECAYS**

## Learning goals

- what are rare decays?
- sketch of theory of rare decays
- some 'recent' highlights in rare B decays
  - Bs->mumu
  - Bd->K\*gamma
  - lepton-flavour violation tests

### Standard Model: "No FCNC at tree level"

### CKM: Flavour changing *charged* currents



### No Flavour changing *neutral* currents



## FCNC at loop level

neutral currents are possible at higher order





- we call them 'rare'
  - higher order
  - often 'GIM suppressed' (cancellation due to unitarity)

### **Examples of rare decays**

• very incomplete table

| transition              | example of decays                                                              |
|-------------------------|--------------------------------------------------------------------------------|
| $b \to s\gamma$         | $B^0 \to K^{*0} \gamma$                                                        |
| $b \to s \ell^+ \ell^-$ | $B_s \to \mu^+ \mu^-, \ B^0 \to K^{*0} \mu^+ \mu^-, \ B^+ \to K^+ \mu^+ \mu^-$ |
| $b \to sq\bar{q}$       | $B_d \to K\pi, \ B_s \to \phi\pi$                                              |
| $b \to d\ell^+\ell^-$   | $B^0 \to \rho^0 \mu^+ \mu^-, \ B_d \to \mu^+ \mu^-$                            |
| $s \to d\gamma$         | $K_L \to \gamma \gamma$                                                        |
| $s \to d\ell^+\ell^-$   | $K_L \to \mu^+ \mu^-, \ K_L \to \pi^0 e^+ e^-, \ K^+ \to \pi^0 \mu^+ \mu^-$    |
| $s \to d \nu \bar{\nu}$ | $K_L \to \pi^0 \nu \bar{\nu}, \ K^+ \to \pi^+ \nu \bar{\nu}$                   |

• branching fractions typically smaller than  $\sim 10^{-5}$ , some much much smaller

## Effective couplings

• <u>Beta decay</u>: "charged current":



### **Effective couplings**





### Dealing with bound states

• consider " $B \rightarrow D \ l \ v$ "

quark level process



$$\mathcal{A}(i \to f) = \langle f | \mathcal{H} | i \rangle$$

$$\Gamma(i \to f) = \int |\mathcal{A}(i \to f)|^2 \, \mathrm{d(phase space)}$$

$$\mathcal{A}(b \to c\ell\bar{\nu}) = \frac{G_F}{\sqrt{2}} V_{cb} \left[ \bar{\ell}\gamma^{\mu} (1 - \gamma^5)\nu \right] \left[ \bar{c}\gamma_{\mu} (1 - \gamma^5)b \right]$$

### Dealing with bound states

• consider " $B \rightarrow D \ l \ v$ "

quark level process



$$\mathcal{A}(b \to c \ell \bar{\nu}) = \frac{G_F}{\sqrt{2}} V_{cb} \left[ \bar{\ell} \gamma^{\mu} (1 - \gamma^5) \nu \right] \left[ \bar{c} \gamma_{\mu} (1 - \gamma^5) b \right]$$

### hadron level process



$$\mathcal{A}(B^0 \to D^+ \ell \bar{\nu}) = \left\langle D^+ \ell \bar{\nu} \right| \mathcal{H} \left| B^0 \right\rangle = ?$$

### Dealing with bound states

• sketch of solution (no formal theory!)



### General solution: operator product expansion

 approximate H with effective Hamiltonian that integrates out 'all heavy stuff', not just the W, but also the top, etc



### General solution: operator product expansion



- Wilson coefficients and matrix elements depend on scale 'mu'
  - computations need to 'match', such that mu-dependence cancels
- matrix elements are hard to compute but effective approximations available: "heavy quark effective theory", "lattice calculations", etc



### Rare *B*-decays and effective couplings: $b \rightarrow sl^+l^-$



### Effects of 'new physics'

$$\mathcal{A}(i \to f) = \frac{G_F}{\sqrt{2}} \sum_{i} V_i^{\text{CKM}} C_i(\mu) \langle f | O_i(\mu) | i \rangle$$

- new 'heavy' particles only affect scales > mu
  - $\rightarrow$  change Wilson coefficients
- new physics may also lead to local operators that are absent in SM
  - e.g. with scalar bosons or right-handed currents
  - lead to different `kinematics' of final state particles

#### **Fully leptonic**

#### Semi-leptonic

#### Radiative



Very rare!  $\mathcal{B} \lesssim 10^{-9}$ 

- Theoretically clean
- Mostly clean to reconstruct **Sensitive mainly to**  $C_{10}^{(')}$ .



• Hadronic pollution.

d

• Mostly clean to reconstruct.

 $K^{(*)0}$ 

d

• Electron reconstruction very challenging.

Sensitive to  $C_7^{(')}$ ,  $C_9^{(')}$  and  $C_{10}^{(')}$  depending on  $q^2 \equiv m_{\ell^+\ell^-}^2$  region.



- Fairly rare,  $\mathcal{B}\sim 10^{-5}$
- Similar to semi-leptonic.
- Experimental resolution not great.

Sensitive to 
$$C_7^{(')}$$
.

< ロ > < 団 > < 豆 > < 豆 > < 豆 > < 豆 < つ < ()</li>

(from Riley Henderson at FPCP'23)

### Rare *B*-decays and effective couplings: $b \rightarrow s\mu^+\mu^-$

• Effective 4-fermion coupling:

$$\mathcal{H}_{eff} = -\frac{4 G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_{i=1}^{10} \mathcal{C}_i \mathcal{O}_i$$

• Standard Model diagrams:





• Beyond Standard Model:



- Experimental test: Compare calculable  $C_i$  coefficients to experimental data
  - Sensitivity for NP in Wilson coefficients  $C_7$ ,  $C_9$ ,  $C_{10}$

 $B_{s,d} \rightarrow \mu^+ \mu^-$ 

- very rare decay in SM: FCNC, helicity suppressed
- precise SM calculation (update!)

• 
$$B(B_S^0 \to \mu^+ \mu^-) = (3.66 \pm 0.14) \times 10^{-9}$$
  
•  $B(B^0 \to \mu^+ \mu^-) = (1.03 \pm 0.05) \times 10^{-10}$   
PRL 112 (2014) 101801  
JHEP 10 (2019) 232





- considered very sensitive to new physics (SUSY etc)
- "clean/easy" experimental signature: just count!

Q: why is the Bd decay more rare than the Bs decay?



 $B_s: V_{ts} V_{tb}^*$ 

 $B_d: V_{td} V_{tb}^*$ 



 $B_{s,d} \rightarrow \mu^+ \mu^-$ 

• observed signals at the LHC:



note the importance of good mass resolution!

 $B_{s,d} \rightarrow \mu^+ \mu^-$ 



- good agreement between experiment and theory
- non-SM contributions not much more than 15%
  - → strong contraints on BSM physics
- no clear evidence yet for Bd->μμ

 $B_d \rightarrow K^{*0} \mu^+ \mu^-$  (and alike)



 invariant mass-squared of μμ pair is called "q-squared":

$$q^2 = \left| p^{\mu}(\ell^+) + p^{\mu}(\ell^-) \right|^2$$

### Contribution of operators depends on $q^2$







• Branching fractions related to  $b \rightarrow s \ \mu^+ \mu^-$  transition *consistently lower* than predicted.

## Angular distributions

• in >2-body decays, also "angular distributions" sensitive to NP



- experimental challenge: backgrounds and angular efficiency
- theoretical challenge: choose observables with small hadronic uncertainties

# Example: angular distributions in $B^0 \rightarrow K^{*0} \mu \mu$





- global fits: perform fits so all b->sll data, allowing for NP contributions to Wilson coefficients
- the fit seems to indicate new contributions to 'C9'
- the 'pull' of the SM is about 4 sigma

### Lepton universality

- SM: all leptons have 'universal couplings'
- well tested with  $W^{\pm} \rightarrow l^{\pm}\nu$  and  $Z^0 \rightarrow l^+l^-$  (e.g. at LEP and SLC)

for example, branching fractions of Z to leptons from PDG:

| $\Gamma_1$ | <i>e</i> <sup>+</sup> <i>e</i> <sup>-</sup> | [1] | $(3.3632 \pm 0.0042)\%$ |
|------------|---------------------------------------------|-----|-------------------------|
| $\Gamma_2$ | $\mu^+\mu^-$                                | [1] | $(3.3662\pm 0.0066)\%$  |
| $\Gamma_3$ | $	au^+	au^-$                                | [1] | $(3.3696 \pm 0.0083)\%$ |

 meson decays provide additional tests, e.g. sensitivity to new forces between quarks and leptons ("lepto-quarks")

# B-decays and lepton universality

•  $b \rightarrow c \ l \ v$  charged current: "Allowed"  $\rightarrow$  large decay rates







# $R_D$ and $R_{D^*}$

•  $b \rightarrow c \, l \, v$  allowed charged current (tree level)

$$R(D^{(*)}) = \frac{BR(B \to D^{(*)}\tau\nu)}{BR(B \to D^{(*)}\mu\nu)}$$

→Involves leptons of 2<sup>nd</sup> and 3<sup>rd</sup> generation





• 
$$b \rightarrow s \, l^+ l^-$$
 suppressed neutral current  
 $R(K) = \frac{BR(B^+ \rightarrow K^+ \mu^+ \mu^-)}{BR(B^+ \rightarrow K^+ e^+ e^-)}$   
 $R(K^*) = \frac{BR(B^0 \rightarrow K^* \mu^+ \mu^-)}{BR(B^0 \rightarrow K^* e^+ e^-)}$   
• caused some excitement in past, because LHCb seemingly found deviations from 1

latest LHCb results are perfectly
 Interview of the set of the



$$R_{K} \text{ and } R_{K}^{*}$$
•  $b \rightarrow s l^{+}l^{-}$  suppressed neutral current  

$$R(K) = \frac{BR(B^{+} \rightarrow K^{+}\mu^{+}\mu^{-})}{BR(B^{+} \rightarrow K^{+}e^{+}e^{-})}$$

$$R(K^{*}) = \frac{BR(B^{0} \rightarrow K^{*}\mu^{+}\mu^{-})}{BR(B^{0} \rightarrow K^{*}e^{+}e^{-})}$$
• Involves leptons of 1<sup>st</sup> and 2<sup>nd</sup> generation  
• situation until 2022: >3 sigma deviation from expectation



Underestimated background:





# $R_K$ and $R_{K^*}$

•  $b \rightarrow s \ l^+l^-$  suppressed neutral current



with expectation *in this observable* 

### why we should keep testing "Lepton universality"

Suppose we could test matter only with long wave-length photons...



We would conclude that these two particles are "<u>identical copies</u>" <u>but for their mass</u> ...

This is exactly the same (*potentially misleading*) argument we use to infer LFU in the SM...



These three (families) of particles seems to be "<u>identical copies</u>" <u>but for their mass</u> ...

The SM quantum numbers of the three families could be an "accidental" <u>low-energy</u> <u>property</u>: the different families may well have a very different behavior at high energies, as <u>signaled by their different mass</u>

### Isidori, 2019

### Implications for low-energy flavor physics

If the anomalies are due to NP, we should expect to see several other BSM effects in low-energy observables

E.g.: correlations among down-type FCNCs [using the results of U(2)-based EFT]:

|                   | μμ (ee)                                                                                                            | ττ                                                                                              | νν                                 | τμ                                                          | μe                                                                                        |
|-------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| $b \rightarrow s$ | R <sub>K</sub> , R <sub>K*</sub>                                                                                   | $B \rightarrow K^{(*)} \tau\tau$ $\longrightarrow 100 \times SM$                                | $B \rightarrow K^{(*)} vv$ $O(1)$  | $B \to K \tau \mu$ $\longrightarrow \sim 10^{-5}$           | $ \begin{array}{c} \mathbf{B} \to \mathbf{K} \ \mu \mathbf{e} \\ \hline ??? \end{array} $ |
| $b \rightarrow d$ | $B_{d} \rightarrow \mu\mu$ $B \rightarrow \pi \mu\mu$ $B_{s} \rightarrow K^{(*)} \mu\mu$ $O(20\%) [R_{K}=R_{\pi}]$ | $\begin{array}{c} B \rightarrow \pi \ \tau\tau \\ \hline \rightarrow 100 \times SM \end{array}$ | $B \rightarrow \pi \nu \nu$ $O(1)$ | $B \rightarrow \pi \tau \mu$ $\longrightarrow \sim 10^{-7}$ | $B \rightarrow \pi \mu e$ $???$                                                           |
| $s \rightarrow d$ | long-distance<br>pollution                                                                                         | NA                                                                                              | $K \rightarrow \pi vv$ $O(1)$      | NA                                                          | K → μe<br>???                                                                             |

### S. Fajfer, ICHEP2018

Models at TeV scale explaining both B anomalies

| Scalar LQ as pseudo-Nambu-Goldstone boson                                             | Vector resonances (from techni-fermions)                                                                                     |  |  |  |
|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Gripaios et al, 1010.3962,<br>Gripaios et al., 1412.1791,<br>Marzocca 1803.10972      | Barbieri et al.,1506.09201, Buttazzo et al.<br>1604.03940,<br>Barbieri et al., 1611.04930<br>Blanke & Crivellin, 1801.07256, |  |  |  |
| Models with scalar LQs<br>Hiller & Schmaltz, 1408.1627,                               | Gauge bosons                                                                                                                 |  |  |  |
| Becirevic et al. 1608.08501, SF and Kosnik, 1511.06024, Becirevic et al., 1503.09024, | Greljo et al., 1804.04642<br>Cline, Camalich, 1706.08510                                                                     |  |  |  |
| Dorsner et al, 1706.07779,<br>Cox et al., 1612.03923,<br>Crivellin et al.,1703.09226  | Calibbi et al.,1709.00692<br>Assad et al., 1708.06350<br>Di Luzio et al.,1708.08450                                          |  |  |  |

Bordone et al.,1712.01368, 1805.09328...

W', Z' in warped space

Megias et al., 1707.08014

## Some of the things that I did not course

- CP violation and rare decays in the Kaon sector
- lepton-number violation (e.g.  $\mu \rightarrow e\gamma, \mu \rightarrow eee$ )
- electric dipole moments
- g-2
- majorana neutrinos
- ...



## **Closing remarks**

- low energy measurements can be sensitive to very high mass scales
- several 'quark flavour physics' measurements show tension with SM predictions
  - experimental effects?
  - theoretical understanding?
  - new physics?
  - $\rightarrow$  Belle-II/LHC measurements will improve a lot over coming decade
- lot's of other exciting experiments ongoing: watch tight!