

Institut de recherche en mathématique et physique Centre de Cosmologie, Physique des Particules et Phénoménologie

Electroweak and Higgs phenomenology including EFT
Celine Degrande

Plan

- Electroweak interaction
 - Beta decay and Fermi theory
 - Parity violation
 - Weak algebra and neutral currents
 - Electroweak theory
- Spontaneous symmetry breaking
 - U(1)
 - · SM
 - Fermions masses
- Effective field theory
 - Introduction
 - Non-interference and revival
 - CP example

Exercices in purple by hand and in MadGraph

Connection to pheno along the way

Questions

- Does the weak interaction explain why there are rocky planets?
- Is the proportionality of the Higgs to fermion couplings to their masses due to
 - Parity
 - Gauge invariance
 - Spontaneous symmetry breaking
- Why are they so many muons produced by cosmic rays in the atmosphere?

Questions

- Why is the proton stable and not the neutron?
- Why is neutrino detection due mainly to nucleons and not electrons?
- Can the W and Z masses being predicted from low energy data?

Electroweak interaction

Beta decay

Beta decay

Fermi theory (1933)

Current x current

Fermi and dimension

Unitarity violation

$$\int_{F} ERM_{1} \propto G_{F}^{2} \times J$$
Proba > 1

Unitarity violation

But in QED

- Always the same fermion
- Massless gauge boson

Pion decay

Pion decay

$$T \propto 6F f_{\pi} me^{2} m_{\pi} \left(1 - \frac{re^{2}}{m_{\pi}^{2}}\right)^{2}$$

$$T = mass$$

$$T = mass$$

$$T = me m_{\pi} \left(1 - \frac{re^{2}}{m_{\pi}^{2}}\right)^{2}$$

$$T = mass$$

$$T = me m_{\pi} \left(1 - \frac{re^{2}}{m_{\pi}^{2}}\right)^{2}$$

$$T = mass$$

$$T = me m_{\pi} \left(1 - \frac{re^{2}}{m_{\pi}^{2}}\right)^{2}$$

$$T = mass$$

$$T = me m_{\pi} \left(1 - \frac{re^{2}}{m_{\pi}^{2}}\right)^{2}$$

$$\frac{\text{Br}\left(\pi \rightarrow e \nu\right)}{\text{Br}\left(\pi \rightarrow \mu \nu\right)} \sim \frac{m_e^2}{m_h^2 \left(1 - \frac{m_\mu^2}{m_h^2}\right)^2} \sim 1.23 \, h^{-4}$$

Because V interaction

Inverse beta decay

neutron star (fermi pressure)

$$|\vec{p}| = \frac{m_n^2 - m_p^2}{2m_n} \simeq \Delta m \simeq 1.3 \text{ MeV}$$

Neutrino detection

EX: scan cross-section fermi for energies from 1 GeV to 100 GeV
Same in the SM

Parity violation

1956 Lee-Yang

Exp 1957 Wu

Averaged value over the events

Parity

Vector

Axial vector or pseudo vector

P-conserving

Parity

Axial vector

Spin projector

Helicity projector

$$P_{\pm} = 1 \pm \cancel{4} \cancel{8} \cancel{5}$$

$$M \rightarrow 0$$

$$8\cancel{R}/\cancel{L} \quad 1 \pm \cancel{8} \cancel{5}$$

$$2$$

Chirality projector

$$\frac{1}{4} = 8L4 \qquad \Rightarrow 4R$$

$$4R = 8R4 \qquad \Rightarrow 4L$$

Parity

$$T = \overline{\Psi} + \Psi = \overline{\Psi} + \Psi + \Psi_R + \Psi_$$

Maximal violating interaction (1958)

Feynman Gell-Mann Marshak Sudarshan

Weak interaction with the left only

$$V_{h} \longrightarrow M_{v} \qquad M_{l} \stackrel{P}{\longrightarrow} M_{v} \qquad M_{A} = \pm M_{v}$$

$$|M_{A}|^{2} \longrightarrow |M_{A}|^{2} - |M_{A}|^{2} + |M_{A}|^{2} + 2R_{e}(M_{v}M_{A}^{*})$$

$$|M_{v} + M_{A}|^{2} = |M_{v}|^{2} + |M_{A}|^{2} + 2R_{e}(M_{v}M_{A}^{*})$$

$$\xrightarrow{P} |M_{v}|^{2} + |M_{A}|^{2} - 2R_{e}(M_{v}M_{A}^{*})$$
C. Degrand

C. Degrande

Fermi summary

Requests: pure left

massive Vector boson changing particle flavour

All the generations but only the leptons for now

$$E_{\times}: = (e^{-}\mu^{+} \rightarrow v_{e} \overline{\psi})$$
 in Fermi and SM at $s = 1, s, so, soo$

Weak group

FERMI =
$$-2\sqrt{2}$$
 GF($\sqrt{p_L}$ \sqrt{k} $\sqrt{p_L}$) (\bar{e}_L \sqrt{k} \sqrt{k}

Weak group

$$f \rightarrow e^{ig\theta(x)} y$$

$$g_{x} \rightarrow g_{x} = g_{x} - ig f_{x}$$
charge replaced by T^{\pm}

Do not commute: non abelian

symmetry group close under anticommutation

Neutral currents and right leptons

$$J_{s}^{\alpha} = J_{kc} = J_{e} \times T^{3} L_{e} = J_{e} \times V_{eL} - J_{e} \times V_{eL}$$
Not EM
$$G(V) = 0$$

No charged currents with the right fermions

Not invariant under SU(2)

Electroweak group

$$\downarrow U(1) \\ y \neq FM \longrightarrow [q, T^q]$$

All particles in an SU(2) multiplet have the same charge

$$\begin{array}{lll}
\Psi &=& \frac{1}{2} (g_2 \overset{\sim}{\times} (x). \tilde{T} + i g_1 \overset{\sim}{\nearrow} O(x) & \Psi \\
D_{\times} &=& \frac{1}{2} (g_2 \overset{\sim}{\longrightarrow} (x). \tilde{T} - i g_1 \overset{\sim}{\nearrow} B_{\times} \\
B_{\mu} &=& \frac{1}{2} (x) + \frac{1}{2} (x) + \frac{1}{2} (x) & \frac$$

C. Degrande

Pheno of non abelian gauge theory

Z-A mixing

$$-i g_2 \frac{1}{2} \omega_3 T^3 L - i g_1 \frac{1}{2} \frac{1$$

$$W^{4} = \frac{W_{1} - iW_{2}}{\sqrt{2}}$$

$$\begin{pmatrix} W_3 \\ B \end{pmatrix} = \begin{pmatrix} C_W \\ -S_W \end{pmatrix} \begin{pmatrix} Z \\ A \end{pmatrix} \frac{c_{W_1}S_W}{s.t.} \int_{W} \exists ie \, G_F A_{\mu} F_{g} F_{g}$$

C. Degrande

FFV

Not interacting, not in the SM

$$\begin{cases}
\gamma_{Q_{R}} = -1 \\
\gamma_{Q_{R}} = -1
\end{cases}$$

$$\begin{cases}
\gamma_{Q_{R}} = -1 \\
\gamma_{Q_{R}} = -1
\end{cases}$$

$$\begin{cases}
\gamma_{Q_{R}} = -1 \\
\gamma_{Q_{R}} = -1
\end{cases}$$

$$\begin{cases}
\gamma_{Q_{R}} = -1 \\
\gamma_{Q_{R}} = -1
\end{cases}$$

$$\begin{cases}
\gamma_{Q_{R}} = -1 \\
\gamma_{Q_{R}} = -1
\end{cases}$$

$$\begin{cases}
\gamma_{Q_{R}} = -1 \\
\gamma_{Q_{R}} = -1
\end{cases}$$

$$\begin{cases}
\gamma_{Q_{R}} = -1 \\
\gamma_{Q_{R}} = -1
\end{cases}$$

$$\begin{cases}
\gamma_{Q_{R}} = -1 \\
\gamma_{Q_{R}} = -1
\end{cases}$$

$$\begin{cases}
\gamma_{Q_{R}} = -1 \\
\gamma_{Q_{R}} = -1
\end{cases}$$

$$\begin{cases}
\gamma_{Q_{R}} = -1 \\
\gamma_{Q_{R}} = -1
\end{cases}$$

$$\begin{cases}
\gamma_{Q_{R}} = -1
\end{cases}$$

$$\begin{cases}$$

More electroweak interactions

Z production

• 6 (pp -> 2 -> ll)/6 (pp -> ll) + + in distribution. Degrand

More Z production + decay

Electroweak precision tests

Exercises

WW scattering

$$P' = (E, 0, 9, P) \quad \mathcal{E}_{\pm} = (0, 1, \pm i, 0)$$

$$\mathcal{E}_{L} = \frac{1}{m} (P, 0, 0, E)$$

longitudinal, only if massive otherwise transverse only

3 pt only

$$||M_1 + M_2||^2 \propto \frac{(s^2 + y + s + t^2)}{m_{ij}}$$

$$=) = n = s \qquad (= n + \frac{|M|^2}{s})$$

3 pt and 4 pt