Effective field theory

Precision: LEP vs LHC

How well do we know the SM?

LHC<LEP: QCD perturbative (α_{S}) and non-pert. (PDF,hadronisation), backgrounds, ...

Precision era at the LHC

Indirect detection of NP

- Assumption : NP scale >> energies probed in experiments

Exp. range

NP scale

EFT

$$
\mathcal{L}=\mathcal{L}_{S M}+\sum_{d>4} \sum_{i} \frac{C_{i}}{\Lambda^{d-4}} \mathcal{O}_{i}^{d} \leftarrow \text { SM fields \& sym. }
$$

EFT

Parametrize any NP but an ∞ number of coefficients

$$
\begin{aligned}
& \mathcal{L}=\mathcal{L}_{S M}+\sum_{d>4} \sum_{i} \frac{C_{i}}{\Lambda^{d-4}} \mathcal{O}_{i}^{d} \leftarrow \text { SM fields \& sym. } \\
& \text { tion: E Exp } \ll \Lambda \\
& \qquad \mathcal{L}=\mathcal{L}_{S M}+\sum_{i} \frac{C_{i}}{\Lambda^{2}} \mathcal{O}_{i}^{6} \quad \begin{array}{c}
\text { a finite number of } \\
\text { coefficients } \\
\text { =>Predictive! }
\end{array}
\end{aligned}
$$

- Assumption : Eexp $\ll \Lambda$
- Model independent (i.e. parametrize a large class of models) : any HEAVY NP
- SM is the leading term : EFT for precision physics
- higher the exp. precision => smaller EFT error

EFT

Parametrize any NP but an ∞ number of coefficients

$$
\begin{aligned}
& \mathcal{L}=\mathcal{L}_{S M}+\sum_{d>4} \sum_{i} \frac{C_{i}}{\Lambda^{d-4}} \mathcal{O}_{i}^{d} \leftarrow \mathrm{SM} \text { fields \& sym. } \\
& \text { tion : E Exp } \ll \Lambda \\
& \quad \mathcal{L}=\mathcal{L}_{S M}+\sum_{i} \frac{C_{i}}{\Lambda^{2}} \mathcal{O}_{i}^{6} \quad \begin{array}{c}
\text { a finite number of } \\
\text { coefficients } \\
\text { =>Predictive! }
\end{array} \\
& C_{i} / \Lambda^{2}
\end{aligned}
$$

- Assumption : Eexp $\ll \Lambda$

measure only C_{i} / Λ^{2}

- Model independent (i.e. parametrize a large class of models) : any HEAVY NP
- SM is the leading term : EFT for precision physics
- higher the exp. precision => smaller EFT error

One hypothesis

How big of a gap?

$p^{2} / m^{2} \sim 0.1$
Weakly $\quad g^{2} \lesssim 1$

How big of a gap?

$\frac{e^{2}}{p^{2}}+\ldots \frac{g^{2}}{m^{2}}+\mathcal{O}\left(\frac{p^{2}}{m^{4}}\right)$
$\frac{e^{2}}{p^{2}}\left(1+\ldots g^{2} \frac{p^{2}}{m^{2}}+\mathcal{O}\left(\frac{p^{4}}{m^{4}}\right)\right)$
$p^{2} / m^{2} \sim 0.1$
Weakly $\quad g^{2} \lesssim 1$

$$
g^{4} \frac{p^{2}}{m^{2}}<g^{4} \frac{p^{4}}{m^{4}}
$$

How big of a gap?

$$
\begin{aligned}
& \frac{e^{2}}{p^{2}}+\ldots \frac{g^{2}}{m^{2}}+\mathcal{O}\left(\frac{p^{2}}{m^{4}}\right) \\
& \frac{e^{2}}{p^{2}}\left(1+\ldots g^{2} \frac{p^{2}}{m^{2}}+\mathcal{O}\left(\frac{p^{4}}{m^{4}}\right)\right)
\end{aligned}
$$

$p^{2} / m^{2} \sim 0.1$
Weakly $\quad g^{2} \lesssim 1$
Strongly $\quad g^{2} \sim 10 \quad g^{2 \downarrow}$

High energy tails

Cross-sections and precision plummet at high energy
EFT/SM is larger at H.E. but so are the EFT errors

EFT \& scales

Perturbativity $\sim \Lambda$

EFT \& scales

Precise : EFT (model ind.)

We measure $\frac{C_{i}}{\Lambda^{2}}$, what is Λ ?

SM+NP NP only $1 / \Lambda^{2}$
Unitarity bound
$\xrightarrow[\mathrm{E}]{\mathrm{SM} 1 / \Lambda^{0}}$
Perturbativity $\sim \Lambda$

EFT \& scales

Precise : EFT (model ind.)

We measure $\frac{C_{i}}{\Lambda^{2}}$, what is Λ ?

SM+NP NP only $1 / \Lambda^{2}$
Unitarity bound $\xrightarrow[\mathrm{E}]{\mathrm{SM} 1 / \Lambda^{0}}$

Perturbativity $\sim \Lambda$

EFT \& scales

Precise : EFT (model ind.)

We measure $\frac{C_{i}}{\Lambda^{2}}$, what is Λ ?

SM $\pm>100 \%$

 Assume SM+dim6 only

Unitarity allowed

SM+NP NP only Unitarity bound

Unitarity > Λ
E
Perturbativity $\sim \Lambda$

EFT \& scales

Precise : EFT (model ind.)

We measure $\frac{C_{i}}{\Lambda^{2}}$, what is Λ ?
$S M \pm>100 \%$
Assume SM
+dim6 only

Unitarity allowed

0/2F operators

X^{3}		φ^{6} and $\varphi^{4} D^{2}$		$\psi^{2} \varphi^{3}$	
$\begin{gathered} Q_{G} \\ Q_{\widetilde{G}} \\ Q_{W} \\ Q_{\widetilde{W}} \end{gathered}$	$\begin{gathered} f^{A B C} G_{\mu}^{A \nu} G_{\nu}^{B \rho} G_{\rho}^{C \mu} \\ f^{A B C} \widetilde{G}_{\mu}^{A \nu} G_{\nu}^{B \rho} G_{\rho}^{C \mu} \\ \varepsilon^{I J K} W_{\mu}^{I \nu} W_{\nu}^{J \rho} W_{\rho}^{K \mu} \\ \varepsilon^{I J K} \widetilde{W}_{\mu}^{I \nu} W_{\nu}^{J \rho} W_{\rho}^{K \mu} \end{gathered}$	$\begin{gathered} Q_{\varphi} \\ Q_{\varphi \square} \\ Q_{\varphi D} \end{gathered}$	$\begin{gathered} \left(\varphi^{\dagger} \varphi\right)^{3} \\ \left(\varphi^{\dagger} \varphi\right) \square\left(\varphi^{\dagger} \varphi\right) \\ \left(\varphi^{\dagger} D^{\mu} \varphi\right)^{\star}\left(\varphi^{\dagger} D_{\mu} \varphi\right) \end{gathered}$	$\begin{aligned} & Q_{e \varphi} \\ & Q_{u \varphi} \\ & Q_{d \varphi} \end{aligned}$	$\begin{aligned} & \left(\varphi^{\dagger} \varphi\right)\left(\bar{l}_{p} e_{r} \varphi\right) \\ & \left(\varphi^{\dagger} \varphi\right)\left(\bar{q}_{p} u_{r} \widetilde{\varphi}\right) \\ & \left(\varphi^{\dagger} \varphi\right)\left(\bar{q}_{p} d_{r} \varphi\right) \end{aligned}$
	$X^{2} \varphi^{2}$		$\psi^{2} X \varphi$		$\psi^{2} \varphi^{2} D$
$\begin{gathered} Q_{\varphi G} \\ Q_{\varphi \widetilde{G}} \\ Q_{\varphi W} \\ Q_{\varphi \widetilde{W}} \\ Q_{\varphi B} \\ Q_{\varphi \widetilde{B}} \\ Q_{\varphi W B} \\ Q_{\varphi \widetilde{W} B} \end{gathered}$	$\begin{gathered} \varphi^{\dagger} \varphi G_{\mu \nu}^{A} G^{A \mu \nu} \\ \varphi^{\dagger} \varphi \widetilde{G}_{\mu \nu}^{A} G^{A \mu \nu} \\ \varphi^{\dagger} \varphi W_{\mu \nu}^{I} W^{I \mu \nu} \\ \varphi^{\dagger} \varphi \widetilde{W}_{\mu \nu}^{I} W^{I \mu \nu} \\ \varphi^{\dagger} \varphi B_{\mu \nu} B^{\mu \nu} \\ \varphi^{\dagger} \varphi \widetilde{B}_{\mu \nu} B^{\mu \nu} \\ \varphi^{\dagger} \tau^{I} \varphi W_{\mu \nu}^{I} B^{\mu \nu} \\ \varphi^{\dagger} \tau^{I} \varphi \widetilde{W}_{\mu \nu}^{I} B^{\mu \nu} \end{gathered}$	$Q_{\text {eW }}$ $Q_{e B}$ $Q_{u G}$ $Q_{u W}$ $Q_{u B}$ $Q_{d G}$ $Q_{d W}$ $Q_{d B}$	$\begin{gathered} \left(\bar{l}_{p} \sigma^{\mu \nu} e_{r}\right) \tau^{I} \varphi W_{\mu \nu}^{I} \\ \left(\bar{l}_{p} \sigma^{\mu \nu} e_{r}\right) \varphi B_{\mu \nu} \\ \left(\bar{q}_{p} \sigma^{\mu \nu} T^{A} u_{r}\right) \widetilde{\varphi} G_{\mu \nu}^{A} \\ \left(\bar{q}_{p} \sigma^{\mu \nu} u_{r}\right) \tau^{I} \widetilde{\varphi} W_{\mu \nu}^{I} \\ \left(\bar{q}_{p} \sigma^{\mu \nu} u_{r}\right) \widetilde{\varphi} B_{\mu \nu} \\ \left(\bar{q}_{p} \sigma^{\mu \nu} T^{A} d_{r}\right) \varphi G_{\mu \nu}^{A} \\ \left(\bar{q}_{p} \sigma^{\mu \nu} d_{r}\right) \tau^{I} \varphi W_{\mu \nu}^{I} \\ \left(\bar{q}_{p} \sigma^{\mu \nu} d_{r}\right) \varphi B_{\mu \nu} \\ \hline \end{gathered}$	$\begin{aligned} & Q_{\varphi l}^{(1)} \\ & Q_{\varphi l}^{(3)} \\ & Q_{\varphi e} \\ & Q_{\varphi \varphi}^{(1)} \\ & Q_{\varphi q}^{(3)} \\ & Q_{\varphi u} \\ & Q_{\varphi d} \\ & Q_{\varphi u d} \end{aligned}$	$\begin{gathered} \left(\varphi^{\dagger} i \stackrel{\leftrightarrow}{D_{\mu}} \varphi\right)\left(\bar{l}_{p} \gamma^{\mu} l_{r}\right) \\ \left(\varphi^{\dagger} i{\left.\stackrel{\leftrightarrow}{D_{\mu}^{I}} \varphi\right)\left(\bar{l}_{p} \tau^{I} \gamma^{\mu} l_{r}\right)}_{\left(\varphi^{\dagger} i \stackrel{\leftrightarrow}{D}_{\mu} \varphi\right)\left(\bar{e}_{p} \gamma^{\mu} e_{r}\right)}^{\left(\varphi^{\dagger} i \overleftrightarrow{D}_{\mu} \varphi\right)\left(\bar{q}_{p} \gamma^{\mu} q_{r}\right)}\right. \\ \left(\varphi^{\dagger} i \overleftrightarrow{D}_{\mu}^{I} \varphi\right)\left(\bar{q}_{p} \tau^{I} \gamma^{\mu} q_{r}\right) \\ \left(\varphi^{\dagger} i \overleftrightarrow{D}_{\mu} \varphi\right)\left(\bar{u}_{p} \gamma^{\mu} u_{r}\right) \\ \left(\varphi^{\dagger} i \overleftrightarrow{D}_{\mu} \varphi\right)\left(\bar{d}_{p} \gamma^{\mu} d_{r}\right) \\ i\left(\widetilde{\varphi}^{\dagger} D_{\mu} \varphi\right)\left(\bar{u}_{p} \gamma^{\mu} d_{r}\right) \end{gathered}$

New interactions + param/field redefinitions

4F operators

$(\bar{L} L)(\bar{L} L)$		$(\bar{R} R)(\bar{R} R)$		$(\bar{L} L)(\bar{R} R)$	
$\begin{gathered} Q_{l l} \\ Q_{q q}^{(1)} \\ Q_{q q}^{(3)} \\ Q_{l q}^{(1)} \\ Q_{l q}^{(3)} \end{gathered}$	$\begin{gathered} \left(\bar{l}_{p} \gamma_{\mu} l_{r}\right)\left(\bar{l}_{s} \gamma^{\mu} l_{t}\right) \\ \left(\bar{q}_{p} \gamma_{\mu} q_{r}\right)\left(\bar{q}_{s} \gamma^{\mu} q_{t}\right) \\ \left(\bar{q}_{p} \gamma_{\mu} \tau^{I} q_{r}\right)\left(\bar{q}_{s} \gamma^{\mu} \tau^{I} q_{t}\right) \\ \left(\bar{l}_{p} \gamma_{\mu} l_{r}\right)\left(\bar{q}_{s} \gamma^{\mu} q_{t}\right) \\ \left(\bar{l}_{p} \gamma_{\mu} \tau^{I} l_{r}\right)\left(\bar{q}_{s} \gamma^{\mu} \tau^{I} q_{t}\right) \end{gathered}$	$\begin{gathered} Q_{e e} \\ Q_{u u} \\ Q_{d d} \\ Q_{e u} \\ Q_{e d} \\ Q_{u d}^{(1)} \\ Q_{u d}^{(8)} \end{gathered}$	$\begin{gathered} \left(\bar{e}_{p} \gamma_{\mu} e_{r}\right)\left(\bar{e}_{s} \gamma^{\mu} e_{t}\right) \\ \left(\bar{u}_{p} \gamma_{\mu} u_{r}\right)\left(\bar{u}_{s} \gamma^{\mu} u_{t}\right) \\ \left(\bar{d}_{p} \gamma_{\mu} d_{r}\right)\left(\bar{d}_{s} \gamma^{\mu} d_{t}\right) \\ \left(\bar{e}_{p} \gamma_{\mu} e_{r}\right)\left(\bar{u}_{s} \gamma^{\mu} u_{t}\right) \\ \left(\bar{e}_{p} \gamma_{\mu} e_{r}\right)\left(\bar{d}_{s} \gamma^{\mu} d_{t}\right) \\ \left(\bar{u}_{p} \gamma_{\mu} u_{r}\right)\left(\bar{d}_{s} \gamma^{\mu} d_{t}\right) \\ \left(\bar{u}_{p} \gamma_{\mu} T^{A} u_{r}\right)\left(\bar{d}_{s} \gamma^{\mu} T^{A} d_{t}\right) \end{gathered}$	$\begin{gathered} Q_{l e} \\ Q_{l u} \\ Q_{l d} \\ Q_{q e} \\ Q_{q u}^{(1)} \\ Q_{q u}^{(8)} \\ Q_{q d}^{(1)} \\ Q_{q d}^{(8)} \\ \hline \end{gathered}$	$\begin{gathered} \left(\bar{l}_{p} \gamma_{\mu} l_{r}\right)\left(\bar{e}_{s} \gamma^{\mu} e_{t}\right) \\ \left(\bar{l}_{p} \gamma_{\mu} l_{r}\right)\left(\bar{u}_{s} \gamma^{\mu} u_{t}\right) \\ \left(\bar{l}_{p} \gamma_{\mu} l_{r}\right)\left(\bar{d}_{s} \gamma^{\mu} d_{t}\right) \\ \left(\bar{q}_{p} \gamma_{\mu} q_{r}\right)\left(\bar{e}_{s} \gamma^{\mu} e_{t}\right) \\ \left(\bar{q}_{p} \gamma_{\mu} q_{r}\right)\left(\bar{u}_{s} \gamma^{\mu} u_{t}\right) \\ \left(\bar{q}_{p} \gamma_{\mu} T^{A} q_{r}\right)\left(\bar{u}_{s} \gamma^{\mu} T^{A} u_{t}\right) \\ \left(\bar{q}_{p} \gamma_{\mu} q_{r}\right)\left(\bar{d}_{s} \gamma^{\mu} d_{t}\right) \\ \left(\bar{q}_{p} \gamma_{\mu} T^{A} q_{r}\right)\left(\bar{d}_{s} \gamma^{\mu} T^{A} d_{t}\right) \end{gathered}$
$(\bar{L} R)(\bar{R} L)$ and $(\bar{L} R)(\bar{L} R)$		B-violating			
$Q_{l e d q}$ $Q_{q u q d}^{(1)}$ $Q_{q u q d}^{(8)}$ $Q_{\text {lequ }}^{(1)}$ $Q_{\text {lequ }}^{(3)}$	$\begin{gathered} \left(\bar{l}_{p}^{j} e_{r}\right)\left(\bar{d}_{s} q_{t}^{j}\right) \\ \left(\bar{q}_{p}^{j} u_{r}\right) \varepsilon_{j k}\left(\bar{q}_{s}^{k} d_{t}\right) \\ \left(\bar{q}_{p}^{j} T^{A} u_{r}\right) \varepsilon_{j k}\left(\bar{q}_{s}^{k} T^{A} d_{t}\right) \\ \left(\bar{l}_{p}^{j} e_{r}\right) \varepsilon_{j k}\left(\bar{q}_{s}^{k} u_{t}\right) \\ \left(\bar{l}_{p}^{j} \sigma_{\mu \nu} e_{r}\right) \varepsilon_{j k}\left(\bar{q}_{s}^{k} \sigma^{\mu \nu} u_{t}\right) \end{gathered}$	$\begin{gathered} Q_{d u q} \\ Q_{q q u} \\ Q_{q q q} \\ Q_{d u u} \end{gathered}$	$\begin{gathered} \varepsilon^{\alpha \beta \gamma} \varepsilon_{j k}\left[\left(d_{p}^{\alpha}\right.\right. \\ \varepsilon^{\alpha \beta \gamma} \varepsilon_{j k}\left[\left(q_{p}^{\alpha j}\right.\right. \\ \varepsilon^{\alpha \beta \gamma} \varepsilon_{j n} \varepsilon_{k m}\left[\left(q_{p}^{\alpha}\right.\right. \\ \varepsilon^{\alpha \beta \gamma}\left[\left(d_{p}^{\alpha}\right)\right. \end{gathered}$	$\begin{gathered} \left.C u_{r}^{\beta}\right] \\ C q_{r}^{\beta} \\ { }^{T} C q_{r}^{\beta} \\ u_{r}^{\beta} \end{gathered}$	$\begin{aligned} & \left.\left(q_{s}^{\gamma j}\right)^{T} C l_{t}^{k}\right] \\ & {\left[\left(u_{s}^{\gamma}\right)^{T} C e_{t}\right]} \\ & {\left[\left(q_{s}^{\gamma m}\right)^{T} C l_{t}^{n}\right]} \\ & \left.\left.u_{s}^{\gamma}\right)^{T} C e_{t}\right] \end{aligned}$

VBS

Operators \rightarrow \downarrow Processes	$Q_{H D}$	$Q_{H \square}$	$Q_{\text {HWB }}$	$Q_{H q}^{(1)}$	$Q_{H q}^{(3)}$	$Q_{H W}$	Q_{W}	$Q_{H l}^{(1)}$	$Q_{H l}^{(3)}$	$Q_{l l}^{(1)}$	$Q_{q q}^{(3)}$	$Q_{q q}^{(3,1)}$	$Q_{q q}^{(1,1)}$	$Q_{q q}^{(1)}$	$Q_{l l}$
WW	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	($)$	\checkmark	\checkmark					
SSWW+2j EW	\checkmark	($)$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	(\checkmark						
OSWW+2j EW	\checkmark	($)$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	(\checkmark						
WZ +2 j EW	\checkmark	($)$													
ZZ +2 j EW	\checkmark	(\checkmark)													
ZV+2j EW	\checkmark														
OSWW +2 j QCD	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark					
WZ +2 j QCD	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark					($)$
$\mathrm{ZZ}+2 \mathrm{j}$ QCD	\checkmark		\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark					($)$
ZV+2j QCD	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark					

VBS

Pure gauge

$$
Q_{W} \mid \varepsilon^{I J K} W_{\mu}^{I \nu} W_{\nu}^{J \rho} W_{\rho}^{K \mu}
$$

whww, wW 22, WWZA, wWAA

$$
\begin{gathered}
T G C \\
\\
G G C \\
\begin{array}{c}
\text { ogether } \\
\text { by } \\
\text { gange } \\
\text { ins }
\end{array}
\end{gathered}
$$

$$
\propto p^{2}
$$

$\propto p$

$$
\alpha p^{0}
$$

similer for Gluon and of
dibosen, VBF, VBS, nultiboson n-jets $n \geqslant 2$ in principle

Higgs operators
Potential/self-coupling modification

$n h$ with $k \geqslant 2$
edefinition $\quad \ni \quad h \square h \stackrel{b y}{=} \partial_{\mu} h \quad \partial \mu h \quad h \rightarrow h\left(1+\frac{c_{\varphi v^{2}}}{\Lambda^{2}}\right)$ change all the SM Higgs eampling
$F F h \rightarrow y_{F}\left(1+\frac{C \varphi_{D} v^{2}}{n^{2}}\right), \ldots$ by the sme amout \hat{f} ducay
Mass redefinition $+\frac{C \varphi_{D}}{\Lambda^{2}} \frac{v^{4}}{16}\left(-g_{2} w_{3}^{\mu}+g_{1} B \mu\right)^{2}$ External parzanter any weak process, $n h z 2$, wh2, $n h$ ($1 \leqslant n \leqslant n$). Degrande

or $\quad \underbrace{\left(\varphi^{+} \varphi-\frac{v^{2}}{2}\right)}_{\left(h v+\frac{h^{2}}{2}\right)}(\underbrace{\left(\overline{u^{2}}\right)}_{\left(\bar{\varphi} u u_{R}\left(\frac{h+v}{\sqrt{2}}\right)\right)}$
mass \& coupling have \neq contributions
h prod $\&$ decay

! one operate for each fermion unless FLAVOUR assumption

multi Kizyss

More Riggs and gauge

Dipoles

$$
\begin{aligned}
& \begin{array}{c|cccc}
Q_{e W} & \left(\bar{l}_{p} \sigma^{\mu \nu} e_{r}\right) \tau^{I} \varphi W_{\mu \nu}^{I} & \text { like } & \text { EDM a MDM } & \text { a } \\
Q_{e B} & \left(\bar{l}_{p} \sigma^{\mu \nu} e_{r}\right) \varphi B_{\mu \nu} & & \text { Cp } & \underset{\text { CP }}{\downarrow} \\
Q_{u G} & \left(\bar{q}_{p} \sigma^{\mu \nu} T^{A} u_{r}\right) \widetilde{\varphi} G^{A} & & &
\end{array} \\
& \begin{array}{l|l}
Q_{u G} & \left(\bar{q}_{p} \sigma^{\mu \nu} T^{A} u_{r}\right) \widetilde{\varphi} G_{\mu \nu}^{A} \\
Q_{u W} & \left(\bar{q}_{p} \sigma^{\mu \nu} u_{r}\right) \tau^{I} \widetilde{\varphi} W_{\mu \nu}^{I}
\end{array} \quad L-R \text { opevatons } \\
& \begin{array}{c|c}
Q_{u B} & \left(\bar{q}_{p} \sigma^{\mu \nu} u_{r}\right) \widetilde{\varphi} B_{\mu \nu} \\
Q_{d G} & \left(\bar{q}_{p} \sigma^{\mu \nu} T^{A} d_{r}\right) \varphi G_{\mu \nu}^{A} \\
Q_{d W} & \left(\bar{q}_{p} \sigma^{\mu \nu} d_{r}\right) \tau^{I} \varphi W_{\mu \nu}^{I} \\
Q_{d B} & \left(\bar{q}_{p} \sigma^{\mu \nu} d_{r}\right) \varphi B_{\mu \nu}
\end{array} \\
& \alpha p
\end{aligned}
$$

seme for other gsugge bosons (ω, z, γ) tEh, singh top,...

Higgs, gauge and fermion

like $\sin \left(\gamma^{t}\right)$
\checkmark prod \& day
No $\quad \gamma F F$
with $\gamma{ }^{\mu}$
because of $U(1)_{E M}$

$h V$ h docs dittipgs

$(\bar{L} L)(\bar{L} L)$		$(\bar{R} R)(\bar{R} R)$		$(\bar{L} L)(\bar{R} R)$	
$\begin{gathered} Q_{l l} \\ Q_{q q}^{(1)} \\ Q_{q q}^{(3)} \\ Q_{l q}^{(1)} \\ Q_{l q}^{(3)} \end{gathered}$	$\begin{gathered} \left(\bar{l}_{p} \gamma_{\mu} l_{r}\right)\left(\bar{l}_{s} \gamma^{\mu} l_{t}\right) \\ \left(\bar{q}_{p} \gamma_{\mu} q_{r}\right)\left(\bar{q}_{s} \gamma^{\mu} q_{t}\right) \\ \left(\bar{q}_{p} \gamma_{\mu} \tau^{I} q_{r}\right)\left(\bar{q}_{s} \gamma^{\mu} \tau^{I} q_{t}\right) \\ \left(\bar{l}_{p} \gamma_{\mu} l_{r}\right)\left(\bar{q}_{s} \gamma^{\mu} q_{t}\right) \\ \left(\bar{l}_{p} \gamma_{\mu} \tau^{I} l_{r}\right)\left(\bar{q}_{s} \gamma^{\mu} \tau^{I} q_{t}\right) \\ \text { FERMI } \end{gathered}$	$\begin{aligned} & Q_{e e} \\ & Q_{u u} \\ & Q_{d d} \\ & Q_{e u} \\ & Q_{e d} \\ & Q_{u d}^{(1)} \\ & Q_{u d}^{(8)} \end{aligned}$	$\begin{gathered} \left(\bar{e}_{p} \gamma_{\mu} e_{r}\right)\left(\bar{e}_{s} \gamma^{\mu} e_{t}\right) \\ \left(\bar{u}_{p} \gamma_{\mu} u_{r}\right)\left(\bar{u}_{s} \gamma^{\mu} u_{t}\right) \\ \left(\bar{d}_{p} \gamma_{\mu} d_{r}\right)\left(\bar{d}_{s} \gamma^{\mu} d_{t}\right) \\ \left(\bar{e}_{p} \gamma_{\mu} e_{r}\right)\left(\bar{u}_{s} \gamma^{\mu} u_{t}\right) \\ \left(\bar{e}_{p} \gamma_{\mu} e_{r}\right)\left(\bar{d}_{s} \gamma^{\mu} d_{t}\right) \\ \left(\bar{u}_{p} \gamma_{\mu} u_{r}\right)\left(\bar{d}_{s} \gamma^{\mu} d_{t}\right) \\ \left(\bar{u}_{p} \gamma_{\mu} T^{A} u_{r}\right)\left(\bar{d}_{s} \gamma^{\mu} T^{A} d_{t}\right) \end{gathered}$	$Q_{l e}$ $Q_{l u}$ $Q_{l d}$ $Q_{q e}$ $Q_{q u}^{(1)}$ $Q_{q u}^{(8)}$ $Q_{q d}^{(1)}$ $Q_{q d}^{(8)}$	$\begin{gathered} \left(\bar{l}_{p} \gamma_{\mu} l_{r}\right)\left(\bar{e}_{s} \gamma^{\mu} e_{t}\right) \\ \left(\bar{l}_{p} \gamma_{\mu} l_{r}\right)\left(\bar{u}_{s} \gamma^{\mu} u_{t}\right) \\ \left(\bar{l}_{p} \gamma_{\mu} l_{r}\right)\left(\bar{d}_{s} \gamma^{\mu} d_{t}\right) \\ \left(\bar{q}_{p} \gamma_{\mu} q_{r}\right)\left(\bar{e}_{s} \gamma^{\mu} e_{t}\right) \\ \left(\bar{q}_{p} \gamma_{\mu} q_{r}\right)\left(\bar{u}_{s} \gamma^{\mu} u_{t}\right) \\ \left(\bar{q}_{p} \gamma_{\mu} T^{A} q_{r}\right)\left(\bar{u}_{s} \gamma^{\mu} T^{A} u_{t}\right) \\ \left(\bar{q}_{p} \gamma_{\mu} q_{r}\right)\left(\bar{d}_{s} \gamma^{\mu} d_{t}\right) \\ \left(\bar{q}_{p} \gamma_{\mu} T^{A} q_{r}\right)\left(\bar{d}_{s} \gamma^{\mu} T^{A} d_{t}\right) \\ \hline \end{gathered}$
$(\bar{L} R)(\bar{R} L)$ and $(\bar{L} R)(\bar{L} R)$		B-violating			
$\begin{aligned} & Q_{l e d q} \\ & Q_{q u q d}^{(1)} \\ & Q_{q u q d}^{(8)} \\ & Q_{\text {lequ }}^{(1)} \\ & Q_{\text {lequ }}^{(3)} \end{aligned}$	$\begin{gathered} \left(\bar{l}_{p}^{j} e_{r}\right)\left(\bar{d}_{s} q_{t}^{j}\right) \\ \left(\bar{q}_{p}^{j} u_{r}\right) \varepsilon_{j k}\left(\bar{q}_{s}^{k} d_{t}\right) \\ \left(\bar{q}_{p}^{j} T^{A} u_{r}\right) \varepsilon_{j k}\left(\bar{q}_{s}^{k} T^{A} d_{t}\right) \\ \left(\bar{l}_{p}^{j} e_{r}\right) \varepsilon_{j k}\left(\bar{q}_{s}^{k} u_{t}\right) \\ \left(\bar{l}_{p}^{j} \sigma_{\mu \nu} e_{r}\right) \varepsilon_{j k}\left(\bar{q}_{s}^{k} \sigma^{\mu \nu} u_{t}\right) \end{gathered}$	$\begin{gathered} Q_{d u q} \\ Q_{q q u} \\ Q_{q q q} \\ Q_{d u u} \end{gathered}$	$\begin{gathered} \varepsilon^{\alpha \beta \gamma} \varepsilon_{j k}\left[\left(d_{1}^{c}\right.\right. \\ \varepsilon^{\alpha \beta \gamma} \varepsilon_{j k}\left[\left(q_{p}^{\alpha}\right.\right. \\ \varepsilon^{\alpha \beta \gamma} \varepsilon_{j n} \varepsilon_{k m}[(q \\ \varepsilon^{\alpha \beta \gamma}\left[\left(d_{p}^{\alpha}\right)\right. \end{gathered}$	$\begin{gathered} C q_{r}^{\beta} \\ { }^{T} C q \\ u_{r}^{\beta} \end{gathered}$	$\begin{aligned} & \left.\left(q_{s}^{\gamma j}\right)^{T} C l_{t}^{k}\right] \\ & {\left[\left(u_{s}^{\gamma}\right)^{T} C e_{t}\right]} \\ & {\left[\left(q_{s}^{\gamma m}\right)^{T} C l_{t}^{n}\right]} \\ & \left.\left.u_{s}^{\gamma}\right)^{T} C e_{t}\right] \end{aligned}$

Comments
more legs \rightarrow mone operatas
move loop
Weak bosons (z, W, h) ave never abuerved (+decay, 4F) SM paramiter volation \rightarrow fit of $c_{i} \&$ SM param
SMEFT is Ampot everywhare \rightarrow in clendiny in background!
L_{D} PDF are extraetaed from data a ssunning SM
Flavour!

(SM-like) Top decay

$t \rightarrow b W$

$$
\begin{aligned}
& \mathcal{O}_{\phi q}^{(3)}=i\left(\phi^{\dagger} \tau^{i} D_{\mu} \phi\right)\left(\bar{Q} \gamma^{\mu} \tau^{i} Q\right)+h . c . \\
& \mathcal{O}_{t W}=\bar{Q} \sigma_{\mu \nu} \tau^{i} t \bar{\phi} W_{i}^{\mu \nu} .
\end{aligned}
$$

C. Zhang, SWillenbrock, PRD83, 034008
$t \rightarrow b l \nu_{l} \quad \mathcal{O}_{q l}^{(3)}=\left(\bar{Q} \gamma^{\mu} \tau^{i} Q\right)\left(\bar{l}_{\gamma} \tau^{i} l\right)$
J.A.Aguilar-Saavedra, NPB843, 683

+ one four-fermion operator for the hadronic decay

$$
\begin{aligned}
\frac{1}{2} \Sigma|M|^{2}= & \frac{V_{t b}^{2} g^{4} u\left(m_{t}^{2}-u\right)}{2\left(s-m_{W}^{2}\right)^{2}}\left(1+2 \frac{C_{\phi q}^{(3)} v^{2}}{V_{t b} \Lambda^{2}}\right)+\frac{4 \sqrt{2} \operatorname{Re} C_{t W} V_{t b} m_{t} m_{W}}{\Lambda^{2}} \frac{g^{2} s u}{\left(s-m_{W}^{2}\right)^{2}} \\
& +\frac{4 C_{q l}^{(3)}}{\Lambda^{2}} \frac{g^{2} u\left(m_{t}^{2}-u\right)}{s-m_{W}^{2}}+\mathcal{O}\left(\Lambda^{-4}\right)
\end{aligned}
$$

Width, W helicities and

$$
\begin{aligned}
& \frac{\Gamma\left(t \rightarrow b e^{+} \nu_{e}\right)}{G e V}=0.1541+\left[0.019 \frac{C_{\phi q}^{(3)}}{\Lambda^{2}}+0.026 \frac{C_{t W}}{\Lambda^{2}}+0 \frac{C_{q l}^{(3)}}{\Lambda^{2}}\right] \mathrm{TeV}^{2} \\
& \left.\begin{array}{r}
\frac{\Gamma_{t}}{G e V}=\Gamma_{S M}+\left[0.17 \frac{C_{\phi q}^{(3)}}{\Lambda^{2}}+0.23 \frac{C_{1 w}}{\Lambda^{2}}\right] \mathrm{TeV}^{2} \\
\Gamma^{\text {meas }}=1.42_{-0.15}^{+0.19} \mathrm{GeV} \\
\Gamma_{S M}^{* *}=1.33 \mathrm{GeV}
\end{array}\right\} \frac{C_{\phi q}^{(3)}}{\Lambda^{2}}+1.35 \frac{C_{t W}}{\Lambda^{2}}=4_{-2.5}^{+2.8} \mathrm{TeV}^{-2}
\end{aligned}
$$

$$
\frac{1}{\Gamma} \frac{d \Gamma}{d \cos \theta}=\frac{3}{8}(1+\cos \theta)^{2} F_{R}+\frac{3}{8}(1-\cos \theta)^{2} F_{L}+\frac{3}{4} \sin ^{2} \theta F_{0}
$$

$$
F_{0}=\frac{m_{t}^{2}}{m_{t}^{2}+2 m_{W}^{2}}-\frac{4 \sqrt{2} \operatorname{Re} C_{t w} V^{2}}{\Lambda^{2} V_{t b}} \frac{m_{t} m_{W}\left(m_{t}^{2}-m_{W}^{2}\right)}{\left(m_{t}^{2}+2 m_{W}^{2}\right)^{2}}
$$

$$
\frac{C_{\phi q}^{(3)}}{\Lambda^{2}}=1.1_{-2.1}^{+2.3} \mathrm{TeV}^{-2}
$$

$$
F_{L}=\frac{2 m_{W}^{2}}{m_{t}^{2}+2 m_{W}^{2}}+\frac{4 \sqrt{2} \operatorname{Re} C_{t w} V^{2}}{\Lambda^{2} V_{t b}} \frac{m_{t} m_{W}\left(m_{t}^{2}-m_{W}^{2}\right)}{\left(m_{t}^{2}+2 m_{W}^{2}\right)^{2}}
$$

$$
F_{R}=0
$$

$$
\left.\begin{array}{c}
F_{0}^{S M^{*}}=0.687 \pm 5 \\
F_{0}^{\text {meas**}}=0.66 \pm 5
\end{array}\right\} \frac{C_{t W}}{\Lambda^{2}}=0.44 \pm 0.9 \mathrm{TeV}^{-2}
$$

4F and Validity

$$
\begin{aligned}
& \frac{c}{\Lambda^{2}} \sim \frac{1}{\left(1 T_{C V}\right)^{2}} \\
& S=m_{E}^{2} \\
& \frac{m_{E}^{2}}{\left(1 T_{E} V\right)^{2}} \sim(0.2)^{2}=4 \% \\
& \left(\frac{m_{E}^{2}}{\left(0.5 T_{C} \Lambda^{2}\right.}\right) \sim(0.4)^{2}=16 \%
\end{aligned}
$$

Exp error ~ 10\%

Almost pure shape effect

SMEFT and interference

Errors : higher power of $1 / \Lambda$

- Contains:
- 1 dim6 insertion squared
- interference with 2 dim6 insertions
- interference with 1 dim8 insertion
- ... at $1 / \Lambda^{-6}$

usually not included

- Error (estimate)

Dimension 8 basis: Li et al., $\underline{2005.00008}$

Errors : higher power of $1 / \Lambda$

$$
\begin{aligned}
& \left.|M(x)|^{2}=\overline{\left|M_{S M}(x)\right|^{2}}+\overline{2 \Re\left(M_{S M}(x) M_{d 6}^{*}(x)\right)}+\begin{array}{c}
\left|M_{d 6}(x)\right|^{2}+\ldots \\
\Lambda^{0}
\end{array}\right] \\
& \mathcal{O}(1) \\
& \text { O(1) } \\
& \mathcal{O}(0.1)<\quad 10 \%=O(0.01) \\
& \mathcal{O}(0.5)>\mathcal{O}(0.25)
\end{aligned}
$$

- Contains:
- 1 dim6 insertion squared
- interference with 2 dim6 insertions
- interference with 1 dim8 insertion
- ... at $1 / \Lambda^{-6}$

usually not included

- Error (estimate)

Dimension 8 basis: Li et al., $\underline{2005.00008}$

interference suppression

Azatov et al., Helicity Selection Rules and Non-Interference for BSM Amplitudes, 1607.05236

A_{4}	$\left\|h\left(A_{4}^{\mathrm{SM}}\right)\right\|$	$\left\|h\left(A_{4}^{\mathrm{BSM}}\right)\right\|$
$V V V V$	0	4,2
$V V \phi \phi$	0	2
$V V \psi \psi$	0	2
$V \psi \psi \phi$	0	2

$\psi \psi \psi \psi$	2,0	2,0
$\psi \psi \phi \phi$	0	0
$\phi \phi \phi \phi$	0	0

interference suppression

Azatov et al., Helicity Selection Rules and Non-Interference for BSM Amplitudes, 1607.05236

A_{4}	$\left\|h\left(A_{4}^{\text {SM }}\right)\right\|$	$\left\|h\left(A_{4}^{\text {BSM }}\right)\right\|$
$V V V V$	0	4,2
$V V \phi \phi$	0	2
$V V \psi \psi$	0	2
$V \psi \psi \phi$	0	2

$\psi \psi \psi \psi$	2,0	2,0
$\psi \psi \phi \phi$	0	0
$\phi \phi \phi \phi$	0	0

$$
\begin{aligned}
& |M(x)|^{2}=\left|M_{S M}(x)\right|^{2}+2 \Re\left(M_{S M}(x) M_{d 6}^{*}(x)\right)+\left|M_{d 6}(x)\right|^{2}+\ldots \quad+\mathcal{O}\left(\Lambda^{-6}\right) \\
& \mathcal{O}(1) \\
& \sim 0 \\
& \mathcal{O}(0.1) \\
& \mathcal{O}(0.03)
\end{aligned}
$$

interference suppression

Azatov et al., Helicity Selection Rules and Non-Interference for BSM Amplitudes, 1607.05236

A_{4}	$\left\|h\left(A_{4}^{\mathrm{SM}}\right)\right\|$	$\left\|h\left(A_{4}^{\mathrm{BSM}}\right)\right\|$
$V V V V$	0	4,2
$V V \phi \phi$	0	2
$V V \psi \psi$	0	2
$V \psi \psi \phi$	0	2

$\psi \psi \psi \psi$	2,0	2,0
$\psi \psi \phi \phi$	0	0
$\phi \phi \phi \phi$	0	0

top pair production

4F interfere only with qq

Interference

$$
\begin{aligned}
& \left.|M(x)|^{2}=\overline{\left|M_{S M}(x)\right|^{2}}+\overrightarrow{2 \Re\left(M_{S M}(x) M_{d 6}^{*}(x)\right)}+\begin{array}{|c}
\Lambda^{0}
\end{array}\right] \begin{array}{c}
\left.M_{d 6}(x)\right|^{2}+\ldots \\
\mathcal{O}\left(\Lambda^{-4}\right)
\end{array} \\
& \Re\left(M_{S M}(x) M_{d 6}^{*}(x)\right)=\sqrt{\left|M_{S M}(x)\right|^{2}\left|M_{d 6}(x)\right|^{2}} \cos \alpha \\
& \text { mom\&spin } \quad \text { Not always positive }
\end{aligned}
$$

Can be suppressed

$$
\sigma \propto \sum_{x}|M(x)|^{2} \quad \text { if } \begin{aligned}
& M_{S M}\left(x_{1}\right)=1, M_{S M}\left(x_{2}\right)=0 \\
& M_{d 6}\left(x_{1}\right)=0, M_{d 6}\left(x_{2}\right)=1
\end{aligned} \quad \sigma_{i n t}=0
$$

Observable dependent

Interference

Can be suppressed

$$
\sigma \propto \sum_{x}|M(x)|^{2} \quad \text { if } \begin{aligned}
& M_{S M}\left(x_{1}\right)=1, M_{S M}\left(x_{2}\right)=\mathscr{A} \\
& M_{d 6}\left(x_{1}\right)=\mathscr{D}, M_{d 6}\left(x_{2}\right)=1
\end{aligned} \quad \sigma_{\text {int }}=0
$$

$$
-1
$$

Observable dependent

$$
\begin{aligned}
& \left.|M(x)|^{2}=\overline{\left|M_{S M}(x)\right|^{2}}+\overline{2 \Re\left(M_{S M}(x) M_{d 6}^{*}(x)\right)}+\begin{array}{c}
\left|M_{d 6}(x)\right|^{2}+\ldots \\
\Lambda^{0}
\end{array}\right] \\
& \Re\left(M_{S M}(x) M_{d 6}^{*}(x)\right)=\sqrt{\left|M_{S M}(x)\right|^{2}\left|M_{d 6}(x)\right|^{2}} \cos \alpha \\
& \text { mom\&spin }
\end{aligned}
$$

Interference

$$
\left.\begin{array}{l}
\left.|M(x)|^{2}=\overline{\left|M_{S M}(x)\right|^{2}}+\overrightarrow{2 \Re\left(M_{S M}(x) M_{d 6}^{*}(x)\right)}+\begin{array}{c}
\Lambda^{0} \\
\Lambda^{-2}
\end{array}\right] \\
\Re\left(M_{S M}(x) M_{d 6}^{*}(x)\right)=\sqrt{\left|M_{S M}(x)\right|^{2}\left|M_{d 6}(x)\right|^{2}} \cos \alpha \\
\mathcal{O}\left(\Lambda^{-4}\right)
\end{array}\right]
$$

Can be suppressed

$$
\sigma \propto \sum_{x}|M(x)|^{2} \quad \text { if } \begin{aligned}
& M_{S M}\left(x_{1}\right)=1, M_{S M}\left(x_{2}\right)=\not \subset \\
& M_{d 6}\left(x_{1}\right)=\mathscr{L}, M_{d 6}\left(x_{2}\right)=1
\end{aligned} \quad \sigma_{\text {int }}=0
$$

$$
\text { or } \alpha \approx \pi / 2 \quad M^{2} \rightarrow M^{2}-i \Gamma M \quad \sigma_{\text {int }} \propto \Gamma
$$

Interference

$$
\left.\begin{array}{l}
|M(x)|^{2}=\overline{\left|M_{S M}(x)\right|^{2}}+\overline{2 \Re\left(M_{S M}(x) M_{d 6}^{*}(x)\right)}+\stackrel{\begin{array}{c}
\left.M_{d 6}(x)\right|^{2}+\ldots \\
\Lambda^{0}
\end{array}}{\Lambda^{-2}\left(\Lambda^{-4}\right)}
\end{array}\right]
$$

Can be suppressed

$$
\sigma \propto \sum_{x}|M(x)|^{2} \quad \text { if } \begin{aligned}
& M_{S M}\left(x_{1}\right)=1, M_{S M}\left(x_{2}\right)=\mathscr{L} \\
& M_{d 6}\left(x_{1}\right)=\mathscr{A}, M_{d 6}\left(x_{2}\right)=1
\end{aligned} \quad \sigma_{\text {int }}=0
$$

$$
\text { or } \alpha \approx \pi / 2 \quad M^{2} \rightarrow M^{2}-i \Gamma M \quad \sigma_{i n t} \propto \Gamma
$$

Interference suppression from phase space

$$
\sigma_{i n t}=\int_{0}^{\pi} 2 \mathfrak{R}\left(M_{1} \bar{M}_{2}\right) d \theta=\int_{0}^{\pi} 2 \cos \theta d \theta=0
$$

Interference revival: Formalism

C.D., M. Maltoni 2012.06595

$$
\sigma^{|i n t|} \equiv \int d \Phi\left|\frac{d \sigma_{\text {int }}}{d \Phi}\right| \quad \gg \sigma_{\text {int }} \quad \begin{aligned}
& \text { =Phase space } \\
& \text { Suppression }
\end{aligned}
$$

$$
\sigma^{\mid \text {meas } \mid} \equiv \int d \Phi_{\text {meas }}\left|\sum_{\{u m\}} \frac{d \sigma}{d \Phi}\right|
$$

Experimentally accessible?

$$
=\lim _{N \rightarrow \infty} \sum_{i=1}^{N} w_{i} * \operatorname{sign}\left(\sum_{u m} M E\left(\vec{p}_{i}, u m\right)\right)
$$

Fully: $\frac{d \sigma_{\text {int }}}{d \theta}(p p \rightarrow Z \gamma) \propto \cos \theta$
Not at all: $\sigma_{\text {int }}\left(\mu_{L}\right)=-\sigma_{\text {int }}\left(\mu_{R}\right)$
neutrino momenta, helicities, jet flavours, initial parton direction,...

Interference revival : 1st example

$$
O_{G}=g_{s} f_{a b c} G_{\nu}^{a, \mu} G_{\rho}^{b, \nu} G_{\mu}^{c, \rho}
$$

Interference vanishes in dijet

$$
\frac{C_{G}}{\Lambda^{2}}<(0.031 \mathrm{TeV})^{-2} \quad \text { from dijet at } \mathcal{O}\left(1 / \Lambda^{4}\right)
$$

R. Goldouzian, M. D. Hildreth, Phys. Lett. B 811, 135889 (2020), arXiv:2001. 02736

Triple gluon operator

add mass or more legs

$$
\frac{c_{G}}{\Lambda^{2}}=1 \mathrm{TeV}^{-2}
$$

	$p_{T}>50 \mathrm{GeV}$		$p_{T}>200 \mathrm{GeV}$	$p_{T}>1000 \mathrm{GeV}$		
proc.	$\sigma[\mathrm{pb}]$	$\mathrm{w}>0$	$\sigma[\mathrm{pb}]$	$\mathrm{w}>0$	$\sigma[\mathrm{pb}]$	$\mathrm{w}>0$
$t \bar{t}$	1.384	85%	1.384	85%	1.384	85%
$t \bar{t} j$	$5.20 \cdot 10^{-1}$	62%	$1.13 \cdot 10^{-1}$	60%	$1.37 \cdot 10^{-3}$	62%
$j j j$	$2.98 \cdot 10^{1}$	52%	$5.90 \cdot 10^{-1}$	52%	$4.91 \cdot 10^{-4}$	61%
$j j j j$	$-2.89 \cdot 10^{1}$	45%	$-2.50 \cdot 10^{-1}$	44%	$-4.12 \cdot 10^{-6}$	39%

Large SM x-sect \& int. cancellation

Part of the phase space with positive interference

Triple gluon operator

Close to Schwartz bound

	SM	much smaller than				$\mathcal{O}\left(1 / \Lambda^{4}\right)$		
				$\left(1 / \Lambda^{2}\right)$				
$p_{\text {p,min }}[\mathrm{GeV}]$	$\sigma[\mathrm{pb}]$	$\sigma[\mathrm{pb}]$	wgt>0	$\sigma^{\|m e a s\|}[\mathrm{pb}]$	$\sigma^{\text {int\| }}[\mathrm{pb}]$	$\sigma[\mathrm{pb}]$		
50	9.70.10 ${ }^{5}$	4.08	50.4\%	7.83.10 ${ }^{2}$	$1.05 \cdot 10^{3}$	$3.93 \cdot 10^{1}$		
200	8.96.10 ${ }^{2}$	2.92.10 ${ }^{-1}$	51.4\%	$3.5 \cdot 10^{1}$	$5.02 \cdot 10^{1}$	2.73		
500	3.10	$1.69 \cdot 10^{-2}$	54.0\%	$6.04 \cdot 10^{-1}$	$8.96 \cdot 10^{-1}$	1.48•10 ${ }^{-1}$		
1000	$9.08 \cdot 10^{-3}$	$4.56 \cdot 10^{-4}$	60.1\%	$1.46 \cdot 10^{-3}$	$2.29 \cdot 10^{-3}$	$3.05 \cdot 10^{-3}$		
Mostly accessible								

Transverse momentum

Efficiency of an observable to revive:
 $$
\frac{O}{\sigma^{\mid \text {meas } \mid}}
$$

> ~40\% efficiency

Transverse sphericity

$$
M_{x y}=\sum_{i=1}^{N_{j e t s}}\left(\begin{array}{cc}
p_{x, i}^{2} & p_{x, i} p_{y, i} \\
p_{y, i} p_{x, i} & p_{y, i}^{2}
\end{array}\right), S p h_{T}=\frac{2 \lambda_{2}}{\lambda_{2}+\lambda_{1}}
$$

~80\% efficiency

Better sensitivity

$p_{T, \text { min }}[\mathrm{GeV}]$	Distribution	$S p h_{T}$ cut	Bins	Upper bound on C_{G} Lower bound on C_{G}		
50	$p_{T}\left[j_{3}\right]$ vs $S p h_{T}$	0.23	34	$2.5 \cdot 10^{-1}\left(1.1 \cdot 10^{-1}\right)$	$-2.5 \cdot 10^{-1}\left(-1.2 \cdot 10^{-1}\right)$	
200	S_{T} vs $S p h_{T}$	0.27	34	$7.5 \cdot 10^{-2}$	$\left(2.3 \cdot 10^{-2}\right)$	$-7.5 \cdot 10^{-2}\left(-2.4 \cdot 10^{-2}\right)$
500	$M\left[j_{2} j_{3}\right]$ vs $S p h_{T}$	0.31	21	$5.5 \cdot 10^{-2}\left(5.3 \cdot 10^{-2}\right)$	$-5.5 \cdot 10^{-2}\left(-3.5 \cdot 10^{-2}\right)$	
1000	$M\left[j_{2} j_{3}\right]$ vs $S p h_{T}$	0.35	7	$2.6 \cdot 10^{-2}\left(1.9 \cdot 10^{-2}\right)$	$-2.6 \cdot 10^{-2}\left(-1.8 \cdot 10^{-2}\right)$	

Lost events for interference (\%)

Bounds dominated by the interference

EFT validity \& error:
$(3 \mathrm{TeV} / 6 \mathrm{TeV})^{\wedge} 2 \sim 0.25$

Better sensitivity

$p_{T, \text { min }}[\mathrm{GeV}]$	Distribution	$S p h_{T}$ cut	Bins	Upper bound on C_{G} Lower bound on C_{G}		
50	$p_{T}\left[j_{3}\right]$ vs $S p h_{T}$	0.23	34	$2.5 \cdot 10^{-1}\left(1.1 \cdot 10^{-1}\right)$	$-2.5 \cdot 10^{-1}\left(-1.2 \cdot 10^{-1}\right)$	
200	S_{T} vs $S p h_{T}$	0.27	34	$7.5 \cdot 10^{-2}$	$\left(2.3 \cdot 10^{-2}\right)$	$-7.5 \cdot 10^{-2}\left(-2.4 \cdot 10^{-2}\right)$
500	$M\left[j_{2} j_{3}\right]$ vs $S p h_{T}$	0.31	21	$5.5 \cdot 10^{-2}\left(5.3 \cdot 10^{-2}\right)$	$-5.5 \cdot 10^{-2}\left(-3.5 \cdot 10^{-2}\right)$	
1000	$M\left[j_{2} j_{3}\right]$ vs $S p h_{T}$	0.35	7	$2.6 \cdot 10^{-2}\left(1.9 \cdot 10^{-2}\right)$	$-2.6 \cdot 10^{-2}\left(-1.8 \cdot 10^{-2}\right)$	

Lost events for interference (\%)

EW bosons production

Large negative K-factors
 Converge?

Large/small K-factor

σ is not the right variable to probe the interference

Interference revival: toy example

$$
\begin{aligned}
& A=d \sigma(\cos \theta>0)-d \sigma(\cos \theta<0) \\
& A_{i n t}^{L O}=2 \\
& A_{i n t}^{N L O}=2.15 \\
& K_{A}=1.1
\end{aligned}
$$

No/little cancellation
(Much) larger sensitivity
Less sensitive to corrections (smaller errors)

Dim-8

dim-8 operators

$$
\begin{aligned}
& \mathcal{O}_{1}=i B^{\mu}{ }_{\nu} B^{\nu}{ }_{\lambda}\left(\bar{d}_{\mathrm{R} p} \gamma^{\lambda} \overleftrightarrow{D}_{\mu} d_{\mathrm{R} r}\right), \\
& \mathcal{O}_{2}=i B^{\mu}{ }_{\nu} B^{\nu}{ }_{\lambda}\left(\bar{u}_{\mathrm{R} p} \gamma^{\lambda} \overleftrightarrow{D}_{\mu} u_{\mathrm{R} r}\right), \\
& \mathcal{O}_{3}=i B^{\mu}{ }_{\nu} B^{\nu}{ }_{\lambda}\left(\bar{q}_{\mathrm{L} p} \gamma \overleftrightarrow{D}_{\mu} q_{\mathrm{L} r}\right), \\
& \mathcal{O}_{4}=i W^{I \mu}{ }_{\lambda} B^{\nu \lambda}\left(\bar{q}_{\mathrm{L} p}^{i} \gamma_{\nu}\left(\tau^{I}\right)_{i}{ }^{j} \overleftrightarrow{D}_{\mu} q_{\mathrm{L} r j}\right), \\
& \mathcal{O}_{5}=i W^{I \mu}{ }_{\lambda} \tilde{B}^{\nu \lambda}\left(\bar{q}_{\mathrm{L} p}^{i} \gamma_{\nu}\left(\tau^{I}\right)_{i}{ }^{j} \overleftrightarrow{D}_{\mu} q_{\mathrm{L} r j}\right), \\
& \mathcal{O}_{6}=i W^{I \nu}{ }_{\lambda} B^{\mu \lambda}\left(\bar{q}_{\mathrm{L} p}^{i} \gamma_{\nu}\left(\tau^{I}\right)_{i}{ }^{j} \overleftrightarrow{D}_{\mu} q_{\mathrm{L} r j}\right), \\
& \mathcal{O}_{7}=i W^{I \nu}{ }_{\lambda} \tilde{B}^{\mu \lambda}\left(\bar{q}_{\mathrm{L} p}^{i} \gamma_{\nu}\left(\tau^{I}\right)_{i}{ }^{j} \overleftrightarrow{D}_{\mu} q_{\mathrm{L} r j}\right), \\
& \mathcal{O}_{8}=i W^{I \mu}{ }_{\nu} W^{I}{ }_{\lambda}\left(\bar{d}_{\mathrm{R} p} \gamma^{\lambda} \overleftrightarrow{D}_{\mu} d_{\mathrm{R} r}\right), \\
& \mathcal{O}_{9}=i W^{I \mu}{ }_{\nu} W^{I}{ }_{\lambda}\left(\bar{u}_{\mathrm{R} p} \gamma^{\lambda} \overleftrightarrow{D}_{\mu} u_{\mathrm{R} r}\right),
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{O}_{10}=i W^{I \mu}{ }_{\nu} W^{I \nu}{ }_{\lambda}\left(\bar{q}_{\mathrm{L} r} \gamma^{\lambda} \overleftrightarrow{D}_{\mu} q_{\mathrm{L} p}\right), \\
& \mathcal{O}_{11}=i \epsilon^{I J K} W^{I \mu}{ }_{\nu} W^{J \nu}{ }_{\lambda}\left(\bar{q}_{\mathrm{L} p}^{i} \gamma^{\lambda}\left(\tau^{K}\right)_{i}{ }^{j} \overleftrightarrow{D}_{\mu} q_{\mathrm{L} r j}\right), \\
& \mathcal{O}_{12}=i \epsilon^{I J K} \tilde{W}^{I \mu}{ }_{\nu} W^{J \nu}{ }_{\lambda}\left(\bar{q}_{\mathrm{L} p}^{i} \gamma^{\lambda}\left(\tau^{K}\right)_{i}{ }^{j} \overleftrightarrow{D}_{\mu} q_{\mathrm{L} r j}\right), \\
& \mathcal{O}_{13}=i \epsilon^{I J K} W^{I \mu}{ }_{\nu} \tilde{W}^{J \nu}{ }_{\lambda}\left(\bar{q}_{\mathrm{L} p}^{i} \gamma^{\lambda}\left(\tau^{K}\right)_{i}{ }^{j} \overleftrightarrow{D}_{\mu} q_{\mathrm{L} r j}\right), \\
& \mathcal{O}_{14}=i\left(\bar{u}_{\mathrm{R} r} \gamma^{\lambda} \overleftrightarrow{D}_{\mu} u_{\mathrm{R} p}\right)\left(D_{\lambda} H^{\dagger} D^{\mu} H\right), \\
& \mathcal{O}_{15}=i\left(\bar{d}_{\mathrm{R} r} \gamma^{\lambda} \overleftrightarrow{D}_{\mu} d_{\mathrm{R} p}\right)\left(D_{\lambda} H^{\dagger} D^{\mu} H\right), \\
& \mathcal{O}_{16}=i\left(\bar{q}_{\mathrm{L} r} \gamma^{\lambda} \overleftrightarrow{D}_{\mu} q_{\mathrm{L} p}\right)\left(D_{\lambda} H^{\dagger} D^{\mu} H\right), \\
& \mathcal{O}_{17}=i\left(\bar{q}_{\mathrm{L} p} \gamma^{\lambda} \tau^{K} \overleftrightarrow{D}_{\mu} q_{\mathrm{L} r}\right)\left(D_{\lambda} H^{\dagger} \tau^{K} D^{\mu} H\right), \\
& \mathcal{O}_{18}=i\left(\bar{u}_{\mathrm{R} p} \gamma^{\mu} \overleftrightarrow{D}^{\nu} d_{\mathrm{R} r}\right) \epsilon^{i j}\left(D^{\mu} H_{i} D^{\nu} H_{j}\right),
\end{aligned}
$$

(b) dim-8 contact corrections

CD,H.-L. Li, $\underline{2303.10493}$

Interference behaviour

Comparison to dim6

Many more possibilities
$z z z, z z \gamma, z \gamma \gamma \subset \operatorname{dim} \delta$
"Give me a lever long enough and a fulcrum on which to place it, and I shall move the world"

Further comments

Top, Higgs and EW fit

Ellis et al.,2012.02779
SMEFiT, 2105.00006
Almeida et al, 2108.04828

Comments

- ME/ML trained vs Observable

Model indep
Efficiency

- Efficient observables
- more sensitive
- smaller errors
- More differential measurements

Observables vs ML trained on model

Faroughy, Bortolato, Kamenik, Kosnik Smolkovic, Symmetry 13 (2021) no.7, 1129

Exercises
$p p \rightarrow z$
in the SMEFTatNLo model which operator?
what is the size of the contribution
$p p \rightarrow l^{+} l^{-} \Omega$ idem

$$
p p \rightarrow t E
$$

$P P \rightarrow j j \rightarrow$ check no G_{G} interference find a process affected by $G_{\varphi D}$ without one of its now vertex

