Effective field theory

Precision: LEP vs LHC

How well do we know the SM?

LHC<LEP: QCD perturbative (α_S) and non-pert. (PDF,hadronisation), backgrounds, ...

Precision era at the LHC

Indirect detection of NP

• Assumption : NP scale >> energies probed in experiments

$\mathcal{L} = \mathcal{L}_{SM} + \sum_{d>4} \sum_{i} \frac{C_i}{\Lambda^{d-4}} \mathcal{O}_i^d - SM \text{ fields \& sym.}$

EFT

Parametrize any NP but an ∞ number of coefficients

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{d>4} \sum_{i} \frac{C_i}{\Lambda^{d-4}} \mathcal{O}_i^d \quad \text{SM fields \& sym.}$$

• Assumption : $\mathbf{E}_{exp} \ll \Lambda$
 $\mathcal{L} = \mathcal{L}_{SM} + \sum_{i} \frac{C_i}{\Lambda^2} \mathcal{O}_i^6$
a finite number of coefficients
=>Predictive!

- Model independent (i.e. parametrize a large class of models) : any HEAVY NP
- SM is the leading term : EFT for precision physics
- higher the exp. precision => smaller EFT error

EFT

Parametrize any NP but an ∞ number of coefficients

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{d>4} \sum_{i} \frac{C_i}{\Lambda^{d-4}} \mathcal{O}_i^d \quad \text{SM fields \& sym.}$$
• Assumption : $\mathbf{E}_{exp} << \Lambda$

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{i} \frac{C_i}{\Lambda^2} \mathcal{O}_i^6$$
a finite number of coefficients =>Predictive!

C. Degrande

- Model independent (i.e. parametrize a large class of models) : any HEAVY NP
- SM is the leading term : EFT for precision physics
- higher the exp. precision => smaller EFT error

m

One hypothesis

Validity: How far?

How big of a gap?

How big of a gap?

How big of a gap?

High energy tails

EFT & scales

EFT & scales

EFT & scales

0/2F operators

	X^3		φ^6 and $\varphi^4 D^2$	$\psi^2 \varphi^3$			
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_{arphi}	$(arphi^\dagger arphi)^3$	$Q_{e\varphi}$	$(\varphi^{\dagger}\varphi)(\overline{l}_{p}e_{r}\varphi)$		
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{\varphi \Box}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	$Q_{u\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}u_{r}\widetilde{\varphi})$		
Q_W	$\varepsilon^{IJK} W^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$	$Q_{\varphi D}$	$\left(\varphi^{\dagger}D^{\mu}\varphi\right)^{\star}\left(\varphi^{\dagger}D_{\mu}\varphi\right)$	$Q_{d\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}d_{r}\varphi)$		
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$						
	$X^2 \varphi^2$		$\psi^2 X \varphi$	$\psi^2 \varphi^2 D$			
$Q_{\varphi G}$	$\varphi^{\dagger}\varphiG^{A}_{\mu u}G^{A\mu u}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi l}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{l}_{p}\gamma^{\mu}l_{r})$		
$Q_{\varphi \widetilde{G}}$	$\varphi^{\dagger}\varphi\widetilde{G}^{A}_{\mu u}G^{A\mu u}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$	$Q_{\varphi l}^{(3)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}^{I}_{\mu}\varphi)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$		
$Q_{\varphi W}$	$\varphi^{\dagger}\varphiW^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{\varphi} G^A_{\mu\nu}$	$Q_{\varphi e}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$		
$Q_{\varphi \widetilde{W}}$	$\varphi^{\dagger}\varphi\widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{\varphi} W^I_{\mu\nu}$	$Q^{(1)}_{\varphi q}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$		
$Q_{\varphi B}$	$\varphi^{\dagger}\varphiB_{\mu u}B^{\mu u}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{\varphi} B_{\mu\nu}$	$Q^{(3)}_{\varphi q}$	$(\varphi^{\dagger}i\overleftrightarrow{D}^{I}_{\mu}\varphi)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$		
$Q_{\varphi \widetilde{B}}$	$\varphi^{\dagger}\varphi\widetilde{B}_{\mu u}B^{\mu u}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$	$Q_{\varphi u}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r})$		
$Q_{\varphi WB}$	$\varphi^{\dagger}\tau^{I}\varphiW^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi d}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$		
$Q_{\varphi \widetilde{W}B}$	$\varphi^{\dagger}\tau^{I}\varphi\widetilde{W}^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu}$	$Q_{\varphi ud}$	$i(\widetilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$		

New interactions + param/field redefinitions

4F operators

	$(\bar{L}L)(\bar{L}L)$		$(\bar{R}R)(\bar{R}R)$	$(\bar{L}L)(\bar{R}R)$				
Q_{ll}	$(\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$	Q_{ee}	$(\bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t)$	Q_{le}	$(\bar{l}_p \gamma_\mu l_r) (\bar{e}_s \gamma^\mu e_t)$			
$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{q}_s \gamma^\mu q_t)$	Q_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(\bar{l}_p \gamma_\mu l_r) (\bar{u}_s \gamma^\mu u_t)$			
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{dd}	$(\bar{d}_p \gamma_\mu d_r) (\bar{d}_s \gamma^\mu d_t)$	Q_{ld}	$(\bar{l}_p \gamma_\mu l_r) (\bar{d}_s \gamma^\mu d_t)$			
$Q_{lq}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{eu}	$(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(\bar{q}_p\gamma_\mu q_r)(\bar{e}_s\gamma^\mu e_t)$			
$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{ed}	$(\bar{e}_p \gamma_\mu e_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{u}_s \gamma^\mu u_t)$			
		$Q_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$\left(\bar{q}_p\gamma_{\mu}T^A q_r)(\bar{u}_s\gamma^{\mu}T^A u_t)\right)$			
		$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{d}_s \gamma^\mu d_t)$			
				$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$			
$(\bar{L}R)(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$		<i>B</i> -violating						
Q_{ledq}	$(\overline{l}_p^j e_r)(\overline{d}_s q_t^j)$	Q_{duq}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(d_p^{\alpha})^T C u_r^{\beta}\right]\left[(q_s^{\gamma j})^T C l_t^k\right]$					
$Q_{quqd}^{(1)}$	$(\bar{q}_p^j u_r) \varepsilon_{jk} (\bar{q}_s^k d_t)$	Q_{qqu}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(q_p^{\alpha j})^T C q_r^{\beta k}\right]\left[(u_s^{\gamma})^T C e_t\right]$					
$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$	Q_{qqq}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\left[(q_p^{\alpha j})^T C q_r^{\beta k}\right]\left[(q_s^{\gamma m})^T C l_t^n\right]$					
$Q_{lequ}^{(1)}$	$(\bar{l}_p^j e_r) \varepsilon_{jk} (\bar{q}_s^k u_t)$	Q_{duu}	$arepsilon^{lphaeta\gamma}\left[(d_p^lpha)^T ight.$	$\begin{bmatrix} C u_r^{\beta} \end{bmatrix} \begin{bmatrix} (u_s^{\gamma})^T C e_t \end{bmatrix}$				
$Q_{lequ}^{(3)}$	$(\bar{l}_p^j \sigma_{\mu\nu} e_r) \varepsilon_{jk} (\bar{q}_s^k \sigma^{\mu\nu} u_t)$							

VBS

$\begin{array}{c} \text{Operators} \rightarrow \\ \downarrow \text{Processes} \end{array}$	Q_{HD}	$Q_{H\square}$	Q_{HWB}	$Q_{Hq}^{(1)}$	$Q_{Hq}^{(3)}$	Q_{HW}	Q_W	$Q_{Hl}^{(1)}$	$Q_{Hl}^{(3)}$	$Q_{ll}^{(1)}$	$Q_{qq}^{(3)}$	$Q_{qq}^{(3,1)}$	$Q_{qq}^{(1,1)}$	$Q_{qq}^{(1)}$	Q_{ll}
WW	 ✓ 		1	1	1		1	(\checkmark)	1	1					
SSWW+2j EW	1	1	1	1	1	1	1	(\checkmark)	1	1	1	1	1	1	(•
OSWW+2j EW	1	1	1	1	1	1	1	(\checkmark)	1	1	1	1	1	1	(•
WZ+2j EW	1	1	1	1	1	1	1	1	1	1	1	1	1	1	(•
ZZ+2j EW	1	1	1	1	1	1	1	1	1	1	1	1	1	1	(•
ZV+2j EW	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
OSWW+2j QCD	1		1	1	1		1	1	1	1					
WZ+2j QCD	1		1	1	1		1	1	1	1					(•
ZZ+2j QCD	1		1	1	1			1	1	1					(•
ZV+2j QCD	~		1	1	1		1	1	1	1					

Bellan et al., 2108.03199

Pure gauge

 $Q_W \quad \varepsilon^{IJK} W^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$

No neutral TGC (ZZA, ZAA)

Higgs operators

Higgs-Fermion

More Higgs and gauge

 $\exists \vee^2 G_{\mu\nu} G_{A}$ $\varphi^{\dagger}\varphi\,G^{A}_{\mu\nu}G^{A\mu\nu}$ $Q_{\varphi G}$ Modification of the kinetic term $\varphi^{\dagger}\varphi\,\widetilde{G}^{A}_{\mu\nu}G^{A\mu\nu}$ $Q_{\varphi \widetilde{G}}$ $\varphi^{\dagger}\varphi\,W^{I}_{\mu\nu}W^{I\mu\nu}$ $Q_{\varphi W}$ Field redefinition or $\varphi^{\dagger}\varphi \,\widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$ $Q_{\varphi \widetilde{W}}$ (q+q-v2) -> only ---- En $\varphi^{\dagger}\varphi B_{\mu\nu}B^{\mu\nu}$ $Q_{\varphi B}$ $\varphi^{\dagger}\varphi\,\widetilde{B}_{\mu\nu}B^{\mu\nu}$ $Q_{\varphi \widetilde{B}}$ $\varphi^{\dagger}\tau^{I}\varphi W^{I}_{\mu\nu}B^{\mu\nu}$ $Q_{\varphi WB}$ $\propto p^2$ Not allowed: A-Z mixing $\varphi^{\dagger}\tau^{I}\varphi\,\widetilde{W}^{I}_{\mu\nu}B^{\mu\nu}$ $Q_{\varphi \widetilde{W}B}$ Who Bho -> kinetic mixing mass mixing $h \rightarrow VV, hV \qquad V=Z, W, X, g$ depend on which external VV->h, VBS... ho sen

Dipoles

 $(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$ Q_{eW} $(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$ Q_{eB} Q_{uG} $(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{\varphi} G^A_{\mu\nu}$ $(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{\varphi} W^I_{\mu\nu}$ Q_{uW} $(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{\varphi} B_{\mu\nu}$ Q_{uB} $(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$ Q_{dG} $(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$ Q_{dW} $(\bar{q}_p \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu}$ Q_{dB}

Хp

Same

tEh, singh

Higgs, gauge and fermion

$$\begin{array}{c|c} Q_{\varphi l}^{(1)} & (\varphi^{\dagger}i \overleftrightarrow{D}_{\mu} \varphi)(\overline{l}_{p} \gamma^{\mu} l_{r}) \\ Q_{\varphi l}^{(3)} & (\varphi^{\dagger}i \overleftrightarrow{D}_{\mu}^{I} \varphi)(\overline{l}_{p} \tau^{I} \gamma^{\mu} l_{r}) \\ Q_{\varphi e} & (\varphi^{\dagger}i \overleftrightarrow{D}_{\mu} \varphi)(\overline{e}_{p} \gamma^{\mu} e_{r}) \\ Q_{\varphi q}^{(1)} & (\varphi^{\dagger}i \overleftrightarrow{D}_{\mu} \varphi)(\overline{q}_{p} \tau^{I} \gamma^{\mu} q_{r}) \\ Q_{\varphi q}^{(3)} & (\varphi^{\dagger}i \overleftrightarrow{D}_{\mu} \varphi)(\overline{q}_{p} \tau^{I} \gamma^{\mu} q_{r}) \\ Q_{\varphi u} & (\varphi^{\dagger}i \overleftrightarrow{D}_{\mu} \varphi)(\overline{u}_{p} \gamma^{\mu} u_{r}) \\ Q_{\varphi d} & (\varphi^{\dagger}i \overleftrightarrow{D}_{\mu} \varphi)(\overline{d}_{p} \gamma^{\mu} d_{r}) \\ Q_{\varphi u d} & i(\widetilde{\varphi}^{\dagger} D_{\mu} \varphi)(\overline{u}_{p} \gamma^{\mu} d_{r}) \end{array}$$

+ $\sim P \rightarrow \propto m_{\rm F}$

hV h deczy di Higgs

4F

	$(\bar{L}L)(\bar{L}L)$		$(\bar{R}R)(\bar{R}R)$	$(\bar{L}L)(\bar{R}R)$				
Q_{ll}	$(\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$	Q_{ee}	$(\bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t)$	Q_{le}	$(\bar{l}_p \gamma_\mu l_r) (\bar{e}_s \gamma^\mu e_t)$			
$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{q}_s \gamma^\mu q_t)$	Q_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t)$			
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{dd}	$(\bar{d}_p \gamma_\mu d_r) (\bar{d}_s \gamma^\mu d_t)$	Q_{ld}	$(\bar{l}_p \gamma_\mu l_r) (\bar{d}_s \gamma^\mu d_t)$			
$Q_{lq}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{eu}	$(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(\bar{q}_p \gamma_\mu q_r)(\bar{e}_s \gamma^\mu e_t)$			
$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{ed}	$(\bar{e}_p \gamma_\mu e_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{u}_s \gamma^\mu u_t)$			
	FERMI	$Q_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t)$			
	$\sim \sim \sim$	$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{d}_s \gamma^\mu d_t)$			
				$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$			
$(\bar{L}R)$	$(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$		<i>B</i> -violating					
Q_{ledq}	$(\bar{l}_p^j e_r)(\bar{d}_s q_t^j)$	Q_{duq}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(d_p^{\alpha})^T C u_r^{\beta}\right]\left[(q_s^{\gamma j})^T C l_t^k\right]$					
$Q_{quqd}^{(1)}$	$(\bar{q}_p^j u_r) \varepsilon_{jk} (\bar{q}_s^k d_t)$	Q_{qqu}	$\varepsilon^{lphaeta\gamma}\varepsilon_{jk}\left[\left(q_{p}^{lpha j} ight) ight]$	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(q_p^{\alpha j})^T C q_r^{\beta k}\right]\left[(u_s^{\gamma})^T C e_t\right]$				
$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$	Q_{qqq}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\left[(q_p^{\alpha j})^T C q_r^{\beta k}\right]\left[(q_s^{\gamma m})^T C l_t^n\right]$					
$Q_{lequ}^{(1)}$	$(\bar{l}_p^j e_r) \varepsilon_{jk} (\bar{q}_s^k u_t)$	Q_{duu}	$\varepsilon^{\alpha\beta\gamma}\left[(d_p^{\alpha})^T C u_r^{\beta}\right]\left[(u_s^{\gamma})^T C e_t\right]$					
$Q_{lequ}^{(3)}$	$(\bar{l}_p^j \sigma_{\mu\nu} e_r) \varepsilon_{jk} (\bar{q}_s^k \sigma^{\mu\nu} u_t)$							

Comments

Flavour!

(SM-like) Top decay

$$t \to bW \qquad \begin{array}{l} \mathcal{O}_{\phi q}^{(3)} = i \left(\phi^{\dagger} \tau^{i} D_{\mu} \phi \right) \left(\bar{Q} \gamma^{\mu} \tau^{i} Q \right) + h.c. \\ \mathcal{O}_{tW} = \bar{Q} \sigma_{\mu\nu} \tau^{i} t \tilde{\phi} W_{i}^{\mu\nu}. \end{array}$$

C. Zhang, S Willenbrock, PRD83, 034008

$$t \to b l \nu_l \qquad \mathcal{O}_{ql}^{(3)} = \left(\bar{Q}\gamma^{\mu}\tau^i Q\right) \left(\bar{l}\gamma_{\mu}\tau^i l\right)$$

J.A. Aguilar-Saavedra, NPB843, 683

+ one four-fermion operator for the hadronic decay

$$\frac{1}{2} \Sigma |M|^2 = \frac{V_{tb}^2 g^4 u(m_t^2 - u)}{2(s - m_W^2)^2} \left(1 + 2 \frac{C_{\phi q}^{(3)} v^2}{V_{tb} \Lambda^2} \right) + \frac{4 \sqrt{2} \text{Re} C_{tW} V_{tb} m_t m_W}{\Lambda^2} \frac{g^2 s u}{(s - m_W^2)^2} \\ + \frac{4 C_{ql}^{(3)}}{\Lambda^2} \frac{g^2 u(m_t^2 - u)}{s - m_W^2} + \mathcal{O}\left(\Lambda^{-4}\right)$$

Width, W helicities and ...

$$\begin{aligned} \frac{\Gamma\left(t \to b e^+ \nu_e\right)}{G e V} &= 0.1541 + \left[0.019 \frac{C_{\phi q}^{(3)}}{\Lambda^2} + 0.026 \frac{C_{tW}}{\Lambda^2} + 0 \frac{C_{ql}^{(3)}}{\Lambda^2} \right] \text{TeV}^2 \\ \frac{\Gamma_t}{G e V} &= \Gamma_{SM} + \left[0.17 \frac{C_{\phi q}^{(3)}}{\Lambda^2} + 0.23 \frac{C_{tW}}{\Lambda^2} \right] \text{TeV}^2 \\ \Gamma^{meas} &= 1.42^{+0.19}_{-0.15} \text{ GeV} \\ \Gamma^{**}_{SM} &= 1.33 \text{ GeV} \end{aligned} \right\} \frac{C_{\phi q}^{(3)}}{\Lambda^2} + 1.35 \frac{C_{tW}}{\Lambda^2} = 4^{+2.8}_{-2.5} \text{TeV}^{-2}$$

$$\frac{1}{\Gamma}\frac{d\Gamma}{d\cos\theta} = \frac{3}{8}(1+\cos\theta)^2 F_R + \frac{3}{8}(1-\cos\theta)^2 F_L + \frac{3}{4}\sin^2\theta F_0$$

$$= \frac{m_t^2}{m_t^2 + 2m_W^2} - \frac{4\sqrt{2}\text{Re}C_{tW}v^2}{\Lambda^2 V_{tb}} \frac{m_t m_W (m_t^2 - m_W^2)}{(m_t^2 + 2m_W^2)^2}$$

$$= \frac{2m_W^2}{m_t^2 + 2m_W^2} + \frac{4\sqrt{2}\text{Re}C_{tW}v^2}{\Lambda^2 V_{tb}} \frac{m_t m_W (m_t^2 - m_W^2)}{(m_t^2 + 2m_W^2)^2}$$

$$= 0$$

 F_0

 F_L

 F_R

$$F_0^{SM^*} = 0.687 \pm 5 \\ F_0^{meas^{**}} = 0.66 \pm 5$$

$$\begin{cases} C_{tW} \\ \Lambda^2 \end{cases} = 0.44 \pm 0.9 \text{TeV}^{-2} \end{cases}$$

C. Degrande

 $\frac{C_{\phi q}^{(3)}}{\Lambda^2} = 1.1_{-2.1}^{+2.3} \text{TeV}^{-2}$

4F and Validity

Almost pure shape effect

SMEFT and interference

\mbox{Errors} : higher power of $1/\Lambda$

Dimension 8 basis: Li et al., 2005.00008

Errors : higher power of $1/\Lambda$

Dimension 8 basis: Li et al., 2005.00008

interference suppression

Azatov et al., Helicity Selection Rules and Non-Interference for BSM Amplitudes, <u>1607.05236</u>

A_4	$ h(A_4^{\mathrm{SM}}) $	$ h(A_4^{\mathrm{BSM}}) $
VVVV	0	$4,\!2$
$VV\phi\phi$	0	2
$VV\psi\psi$	0	2
$V\psi\psi\phi$	0	2

interference suppression

Azatov et al., Helicity Selection Rules and Non-Interference for BSM Amplitudes, <u>1607.05236</u>

A_4	$ h(A_4^{\mathrm{SM}}) $	$ h(A_4^{\mathrm{BSM}}) $				
VVVV	0	$4,\!2$	$\psi\psi\psi\psi\psi$	$2,\!0$	2,0	
$VV\phi\phi$	0	2	$\psi\psi\phi\phi$	0	0	
$VV\psi\psi$	0	2	$\phi\phi\phi\phi$	0	0	
$V\psi\psi\phi$	0	2			·	

interference suppression

Azatov et al., Helicity Selection Rules and Non-Interference for BSM Amplitudes, <u>1607.05236</u>

A_4	$ h(A_4^{\mathrm{SM}}) $	$ h(A_4^{\mathrm{BSM}}) $				
VVVV	0	$4,\!2$	$\psi\psi\psi\psi\psi$	$2,\!0$	2,0	
$VV\phi\phi$	0	2	$\psi\psi\phi\phi$	0	0	
$VV\psi\psi$	0	2	$\phi\phi\phi\phi$	0	0	
$V\psi\psi\phi$	0	2	·		, · · ·	J

$$|M(x)|^{2} = \frac{|M_{SM}(x)|^{2}}{\Lambda^{0}} + \frac{2\Re (M_{SM}(x)M_{d6}^{*}(x))}{\Lambda^{-2}} + \frac{|M_{d6}(x)|^{2} + \dots}{\Lambda^{-4}} + \mathcal{O}(\Lambda^{-6})$$

$$\mathcal{O}(1) \qquad \sim 0 \qquad \qquad \mathcal{O}(0.1) \qquad \qquad \mathcal{O}(0.03)$$

Assuming ~0 C. Degrande

top pair production

4F interfere only with qq

$$\begin{split} |M(x)|^{2} &= \boxed{|M_{SM}(x)|^{2}}_{\Lambda^{0}} + \frac{2\Re \left(M_{SM}(x)M_{d6}^{*}(x)\right)}{\Lambda^{-2}} + \frac{|M_{d6}(x)|^{2} + \dots}{\mathcal{O}\left(\Lambda^{-4}\right)} \\ &\Re \left(M_{SM}(x)M_{d6}^{*}(x)\right) = \sqrt{|M_{SM}(x)|^{2} |M_{d6}(x)|^{2}} \cos \alpha \\ & \text{mom} \\ &\text{mom} \\ &\text{spin} \\ &\text{Not always positive} \\ &\sigma \propto \sum_{x} |M(x)|^{2} \quad \text{if} \\ & M_{SM}(x_{1}) = 1, M_{SM}(x_{2}) = 0 \\ &M_{d6}(x_{1}) = 0, M_{d6}(x_{2}) = 1 \\ \end{split}$$

Observable dependent

$$\begin{split} |M(x)|^2 &= \boxed{|M_{SM}(x)|^2}_{\Lambda^0} + \underbrace{2\Re \left(M_{SM}(x)M_{d6}^*(x)\right)}_{\Lambda^{-2}} + \underbrace{|M_{d6}(x)|^2 + \dots}_{\mathcal{O}\left(\Lambda^{-4}\right)} \\ \Re \left(M_{SM}(x)M_{d6}^*(x)\right) &= \sqrt{|M_{SM}(x)|^2 |M_{d6}(x)|^2} \cos \alpha \\ & \text{mom} \\ \text{mom} \\ \text{spin} \\ \text{Not always positive} \\ \sigma &\propto \sum_x |M(x)|^2 \quad \text{if} \\ M_{SM}(x_1) &= 1, M_{SM}(x_2) = \emptyset \\ M_{d6}(x_1) &= \emptyset, M_{d6}(x_2) = 1 \\ -1 \\ & \text{Observable dependent} \\ \end{split}$$

$$\begin{split} |M(x)|^{2} &= \boxed{|M_{SM}(x)|^{2}}_{\Lambda^{0}} + \underbrace{2\Re \left(M_{SM}(x)M_{d6}^{*}(x)\right)}_{\Lambda^{-2}} + \underbrace{|M_{d6}(x)|^{2} + \dots}_{\mathcal{O}\left(\Lambda^{-4}\right)} \\ & \Re \left(M_{SM}(x)M_{d6}^{*}(x)\right) = \sqrt{|M_{SM}(x)|^{2} |M_{d6}(x)|^{2} \cos \alpha} \\ & \text{mom&spin} \qquad \text{Not always positive} \\ & \sigma \propto \sum_{x} |M(x)|^{2} \quad \text{if} \qquad \underbrace{M_{SM}(x_{1}) = 1, M_{SM}(x_{2}) = \cancel{A}}_{M_{d6}(x_{1}) = \cancel{A}, M_{d6}(x_{2}) = 1} \\ & \sigma_{int} = 0 \\ & \sigma_{int} \approx \pi/2 \qquad M^{2} \rightarrow M^{2} - i\Gamma M \qquad \sigma_{int} \propto \Gamma \\ & \text{C. Degrande} \\ \end{aligned}$$

$$\begin{split} |M(x)|^{2} &= \boxed{|M_{SM}(x)|^{2}}_{\Lambda^{0}} + \underbrace{2\Re \left(M_{SM}(x)M_{d6}^{*}(x)\right)}_{\Lambda^{-2}} + \underbrace{|M_{d6}(x)|^{2} + \dots}_{\mathcal{O}\left(\Lambda^{-4}\right)} \\ \Re \left(M_{SM}(x)M_{d6}^{*}(x)\right) &= \sqrt{|M_{SM}(x)|^{2} |M_{d6}(x)|^{2} \cos \alpha} \\ & \text{mom} \\ \text{spin} \\ \text{Not always positive} \\ \sigma &\propto \sum_{x} |M(x)|^{2} \quad \text{if} \\ M_{SM}(x_{1}) &= 1, M_{SM}(x_{2}) = \cancel{M} \\ M_{d6}(x_{1}) &= \cancel{M}, M_{d6}(x_{2}) = 1 \\ & \text{of } \alpha \approx \pi/2 \\ M^{2} \rightarrow M^{2} - i\Gamma M \\ \\ \end{bmatrix} \\ \begin{array}{c} \mathcal{M}_{SM}(x) \mathcal{M}_{d6}(x) \mathcal{M}_{d6}(x$$

Interference suppression from phase space

Interference revival: Formalism

C.D., M. Maltoni 2012.06595

$$\begin{split} \sigma^{|int|} &\equiv \int d\Phi \left| \frac{d\sigma_{int}}{d\Phi} \right| >> \sigma_{int} & = \text{Phase space Suppression} \\ \sigma^{|meas|} &\equiv \int d\Phi_{meas} \left| \sum_{\{um\}} \frac{d\sigma}{d\Phi} \right| & \text{Experimentally accessible?} \\ &= \lim_{N \to \infty} \sum_{i=1}^{N} w_i * \text{sign} \left(\sum_{um} ME(\vec{p}_i, um) \right) \\ \text{Fully: } \frac{d\sigma_{int}}{d\theta} (pp \to Z\gamma) \propto \cos \theta \\ \text{Not at all: } \sigma_{int}(\mu_L) &= -\sigma_{int}(\mu_R) \end{split}$$

Interference revival : 1st example

$$O_G = g_s f_{abc} \ G^{a,\mu}_{\nu} G^{b,\nu}_{\rho} G^{c,\rho}_{\mu}$$

Interference vanishes in dijet

$$\frac{C_G}{\Lambda^2} < (0.031 \text{ TeV})^{-2}$$
 from dijet at $\mathcal{O}\left(1/\Lambda^4\right)$

R. Goldouzian, M. D. Hildreth, Phys. Lett. B 811, 135889 (2020), arXiv:2001.02736

Triple gluon operator

Triple gluon operator

Transverse momentum

Efficiency of an observable to revive:

~40% efficiency

()

 $\sigma^{|meas|}$

Transverse sphericity

$$M_{xy} = \sum_{i=1}^{N_{jets}} \begin{pmatrix} p_{x,i}^2 & p_{x,i}p_{y,i} \\ p_{y,i}p_{x,i} & p_{y,i}^2 \end{pmatrix}, \ Sph_T = \frac{2\lambda_2}{\lambda_2 + \lambda_1}$$

Better sensitivity

$p_{T,min}$ [GeV]	Distribution	Sph_T cut	Bins	Upper bound on C_G Lower bound on C_G
50	$p_T[j_3]$ vs Sph_T	0.23	34	$2.5 \cdot 10^{-1} (1.1 \cdot 10^{-1}) -2.5 \cdot 10^{-1} (-1.2 \cdot 10^{-1})$
200	S_T vs Sph_T	0.27	34	$7.5 \cdot 10^{-2} (2.3 \cdot 10^{-2}) -7.5 \cdot 10^{-2} (-2.4 \cdot 10^{-2})$
500	$M[j_2j_3]$ vs Sph_T	0.31	21	$5.5 \cdot 10^{-2} (5.3 \cdot 10^{-2}) -5.5 \cdot 10^{-2} (-3.5 \cdot 10^{-2})$
1000	$M[j_2j_3]$ vs Sph_T	0.35	7	$2.6 \cdot 10^{-2} (1.9 \cdot 10^{-2}) -2.6 \cdot 10^{-2} (-1.8 \cdot 10^{-2})$
				Λ^{-2} Λ^{-4}

Better sensitivity

			1	1					
	$p_{T,min}$ [GeV]	Distribution	Sph_T cut	Bins	Upper bound on C_G Lower bound on C_G				
	50	$p_T[j_3]$ vs Sph_T	0.23	34	$2.5 \cdot 10^{-1} (1.1 \cdot 10^{-1}) -2.5 \cdot 10^{-1} (-1.2 \cdot 10^{-1})$				
	200	S_T vs Sph_T	0.27	34	$7.5 \cdot 10^{-2} (2.3 \cdot 10^{-2}) -7.5 \cdot 10^{-2} (-2.4 \cdot 10^{-2})$				
	500	$M[j_2j_3]$ vs Sph_T	0.31	21	$5.5 \cdot 10^{-2} (5.3 \cdot 10^{-2}) -5.5 \cdot 10^{-2} (-3.5 \cdot 10^{-2})$				
	1000	$M[j_2j_3]$ vs Sph_T	0.35	7	$2.6 \cdot 10^{-2} (1.9 \cdot 10^{-2}) -2.6 \cdot 10^{-2} (-1.8 \cdot 10^{-2})$				
	Λ^{-2} Λ^{-4}								
50.55									
7.5					Bounds dominated by the interference				
6.5	<u> </u>	3							

CG

CG

p₇ > 1000 GeV

9.5

4

10.0

] vs spher, Λ⁻²

 $M[j_2j_3]$ vs spher, $\Lambda^{-2} + \Lambda^{-4}$

9.0

 S_T, Λ^{-2}

----- S_7 , $\Lambda^{-2} + \Lambda^{-4}$

8.5

7.5

7.0

6.5

6.0

5.5

5.0

4.5

4.0

5.5

6.5

6.0

7.5

7.0

8.0

 $\sqrt{s_{max}}$ (TeV)

A bounds (TeV)

EFT validity & error:

(3TeV/6TeV)^2~0.25

for $c_G = 2$ and $E^2/\Lambda^2 = 1/2$

EW bosons production

Large/small K-factor

 σ is not the right variable to probe the interference

Interference revival: toy example

$$A = d\sigma(\cos \theta > 0) - d\sigma(\cos \theta < 0)$$

$$A_{int}^{LO} = 2 \qquad > > \sigma_{int}^{LO} = 0.16$$

$$A_{int}^{NLO} = 2.15$$

$$K_A = 1.1$$

No/little cancellation (Much) larger sensitivity Less sensitive to corrections (smaller errors)

dim-8 operators

$$\begin{split} \mathcal{O}_{1} &= iB^{\mu}{}_{\nu}B^{\nu}{}_{\lambda}(\bar{d}_{\mathrm{R}p}\gamma^{\lambda}\overleftrightarrow{D}_{\mu}d_{\mathrm{R}r}), \\ \mathcal{O}_{2} &= iB^{\mu}{}_{\nu}B^{\nu}{}_{\lambda}(\bar{u}_{\mathrm{R}p}\gamma^{\lambda}\overleftrightarrow{D}_{\mu}u_{\mathrm{R}r}), \\ \mathcal{O}_{3} &= iB^{\mu}{}_{\nu}B^{\nu}{}_{\lambda}\left(\bar{q}_{\mathrm{L}p}\gamma^{\lambda}\overleftrightarrow{D}_{\mu}q_{\mathrm{L}r}\right), \\ \mathcal{O}_{4} &= iW^{I\mu}{}_{\lambda}B^{\nu\lambda}\left(\bar{q}_{\mathrm{L}p}^{i}\gamma_{\nu}\left(\tau^{I}\right)_{i}{}^{j}\overleftrightarrow{D}_{\mu}q_{\mathrm{L}rj}\right), \\ \mathcal{O}_{5} &= iW^{I\mu}{}_{\lambda}\tilde{B}^{\nu\lambda}\left(\bar{q}_{\mathrm{L}p}^{i}\gamma_{\nu}\left(\tau^{I}\right)_{i}{}^{j}\overleftrightarrow{D}_{\mu}q_{\mathrm{L}rj}\right), \\ \mathcal{O}_{6} &= iW^{I\nu}{}_{\lambda}B^{\mu\lambda}\left(\bar{q}_{\mathrm{L}p}^{i}\gamma_{\nu}\left(\tau^{I}\right)_{i}{}^{j}\overleftrightarrow{D}_{\mu}q_{\mathrm{L}rj}\right), \\ \mathcal{O}_{7} &= iW^{I\nu}{}_{\lambda}\tilde{B}^{\mu\lambda}\left(\bar{q}_{\mathrm{L}p}^{i}\gamma_{\nu}\left(\tau^{I}\right)_{i}{}^{j}\overleftrightarrow{D}_{\mu}q_{\mathrm{L}rj}\right), \\ \mathcal{O}_{8} &= iW^{I\mu}{}_{\nu}W^{I\nu}{}_{\lambda}(\bar{d}_{\mathrm{R}p}\gamma^{\lambda}\overleftarrow{D}_{\mu}d_{\mathrm{R}r}), \\ \mathcal{O}_{9} &= iW^{I\mu}{}_{\nu}W^{I\nu}{}_{\lambda}(\bar{u}_{\mathrm{R}p}\gamma^{\lambda}\overleftarrow{D}_{\mu}u_{\mathrm{R}r}), \end{split}$$

 $\mathcal{O}_{10} = i W^{I\mu}{}_{\nu} W^{I\nu}{}_{\lambda} \left(\bar{q}_{\mathrm{L}r} \gamma^{\lambda} \overleftarrow{D}{}_{\mu} q_{\mathrm{L}p} \right),$ $\mathcal{O}_{11} = i\epsilon^{IJK} W^{I\mu}{}_{\nu} W^{J\nu}{}_{\lambda} \left(\bar{q}^{i}_{\mathrm{L}p} \gamma^{\lambda} \left(\tau^{K} \right)_{i}{}^{j} \overleftarrow{D}_{\mu} q_{\mathrm{L}rj} \right),$ $\mathcal{O}_{12} = i\epsilon^{IJK} \tilde{W}^{I\mu}{}_{\nu} W^{J\nu}{}_{\lambda} \left(\bar{q}^{i}_{\mathrm{L}p} \gamma^{\lambda} \left(\tau^{K} \right)_{i}{}^{j} \overleftarrow{D}_{\mu} q_{\mathrm{L}rj} \right),$ $\mathcal{O}_{13} = i\epsilon^{IJK} W^{I\mu}{}_{\nu} \tilde{W}^{J\nu}{}_{\lambda} \left(\bar{q}^{i}_{\mathrm{L}p} \gamma^{\lambda} \left(\tau^{K} \right)_{i}{}^{j} \overleftarrow{D}_{\mu} q_{\mathrm{L}rj} \right),$ $\mathcal{O}_{14} = i \left(\bar{u}_{\mathrm{R}r} \gamma^{\lambda} \overleftarrow{D}_{\mu} u_{\mathrm{R}p} \right) \left(D_{\lambda} H^{\dagger} D^{\mu} H \right),$ $\mathcal{O}_{15} = i \left(\bar{d}_{\mathrm{R}r} \gamma^{\lambda} \overleftarrow{D}_{\mu} d_{\mathrm{R}p} \right) \left(D_{\lambda} H^{\dagger} D^{\mu} H \right),$ $\mathcal{O}_{16} = i \left(\bar{q}_{\mathrm{L}r} \gamma^{\lambda} \overleftarrow{D}_{\mu} q_{\mathrm{L}p} \right) \left(D_{\lambda} H^{\dagger} D^{\mu} H \right),$ $\mathcal{O}_{17} = i \left(\bar{q}_{\mathrm{L}p} \gamma^{\lambda} \tau^{K} \overleftarrow{D}_{\mu} q_{\mathrm{L}r} \right) \left(D_{\lambda} H^{\dagger} \tau^{K} D^{\mu} H \right),$ $\mathcal{O}_{18} = i(\bar{u}_{\mathrm{B}n}\gamma^{\mu}\overleftrightarrow{D}^{\nu}d_{\mathrm{B}r})\epsilon^{ij}(D^{\mu}H_iD^{\nu}H_i),$

> ^V CD,H.-L. Li, <u>2303.10493</u>

(a) dim-6 vertex corrections

(b) dim-8 contact corrections

Interference behaviour

Table 2: Scaling of $q\bar{q} \rightarrow WW$ interference amplitude after summing and averaging over spins and helicities.

Comparison to dim6

Many more possibilities

ZZZ, ZZX, ZXX C dim 8

"Give me a lever long enough and a fulcrum on which to place it, and I shall move the world"

Further comments

Top, Higgs and EW fit

Comments

validity

TH interpretration [H.E. cuts]

Efficient observables

Efficiency

- more sensitive
- smaller errors
- More differential measurements

Observables vs ML trained on model

Faroughy, Bortolato, Kamenik, Kosnik Smolkovic, Symmetry 13 (2021) no.7, 1129

Exercises

in the SMEFTatNLO model PP -> Z which operators? what is the size of the contribution PP -> l'l) idem pp -> tE -> check no GG interference PP -> jj find a process affected by 6 40 without one of its new vertex