

High-energy ν and γ from winds and tori in active galactic nuclei

Susumu Inoue Matteo Cerruti Kohta Murase Ruo-Yu Liu Astrophysics Workshop on Numerical Multimessenger Modeling

> Bohum February 27, 2023

arXiv:2207.02097, under review Slides by Susumu Inoue @ Gamma22

NGC 1068

ν AND γ FROM NGC 1068

GeV γ: exceeds starburst expectation -> AGN origin? Yoast-Hull+ 14, Eichmann & Becker Tjus 16

TeV γ : upper limits rule out low $\tau_{\gamma\gamma}$ environments MAGIC Col. 19

ν AND γ FROM NGC 1068

issues:

- acceleration in corona robust?
- origin of GeV γ rays?
- cascade at <<MeV?

- -> this study:
- shock accel. in winds
- inner $p\gamma$ + outer pp
- evaluate down to radio

LINE DRIVEN WINDS: SUCCESSFUL vs FAILED

- high L_{UV} -> enhanced p_{rad} for metal line transitions -> outflow - high L_X ->

inner R: overionization, p_{rad} loss -> failed wind (v<v_{esc}, fallback) outer R: shielding -> successful wind (v>v_{esc}, mainly equatorial)

- failed winds expected for moderate/high M, inc. NGC 1068 -> X-ray obscurers, BLR, soft X excess? Giustini & Proga 19
- outflow + fallback -> shock formation? high P? Sim+ 10

p- $\gamma \nu$ AND γ FROM INNER REGION

6

INNER REGION TIMESCALES

ON LeHa

Radiative lepto-hadronic code to model *blazar* SEDs

Photo-meson interactions computed running SOPHIA on the fly

Code description with application to extreme blazars in 2015

Recently extended to work with any arbitrary external field

For this work, added p-p following Kelner&Aharonian

-> Two spherical emitting regions, slowly moving. Proton distribution self-consistently computed from cooling time-scales (in practice, run LeHa twice).

INNER REGION EMISSION

- γ : EM cascade (mostly p γe^{\pm}) consistent wrt available MWL $\gamma\gamma$ attenuated by disk UV-X >~MeV but non-negligible ~<GeV prominent at (keV-)MeV -> for future instruments

9

p-p ν AND γ FROM OUTER REGION

OUTER REGION EMISSION

OVERALL EMISSION

- inner region (failed wind) py: TeV v, $\langle GeV cascade \rangle$ - outer region (wind-torus) pp: $\rangle GeV \gamma$, GHz radio

EFFECT OF MODEL PARAMETERS

EFFECT OF MODEL PARAMETERS

CONCLUSIONS

summary

fact: AGN winds - fast, powerful, widespread, inc. NGC 1068

interpretation of $v+\gamma$ emission from NGC 1068

- p accel. in inner regions near BH <- failed line-driven wind
- assuming v<<v_{esc}, $p\gamma$ neutrinos with soft TeV spectrum
- EM cascade $\gamma\gamma$ attenuated >MeV but non-negligible <GeV
- p accel. in wind-torus interaction shock, pp at GeV γ , potentially radio -> to be explored

future tests and prospects

- cascade MeV, MM variability: v, <GeV γ vs polarized opt/NIF
- other AGN (esp. unobscured) by IceCube-Gen2, CTA, etc
- contribution to diffuse v background
- unique info on AGN wind formation, esp. obscured objects

WIND POWER