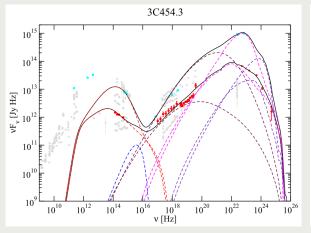
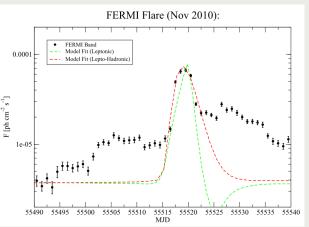

Multi-Zone Hadronic Blazar Model & Observable

Haocheng Zhang (NPP Fellow/NASA GSFC)

Why Multi-Zone?

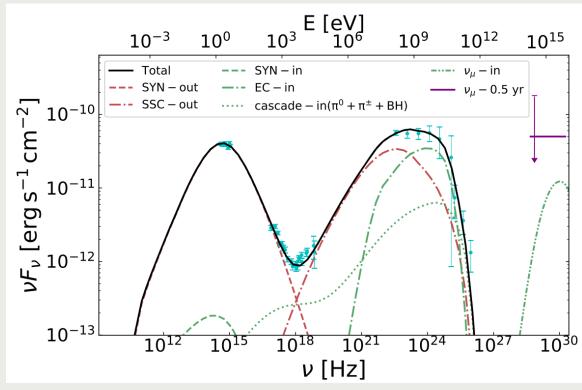
Energy [eV]


One-zone model faces serious challenges in explaining many time-domain and multi-messenger events:


- 1. Fast gamma-ray flares
- 2. Orphan flares
- 3. Neutrinos

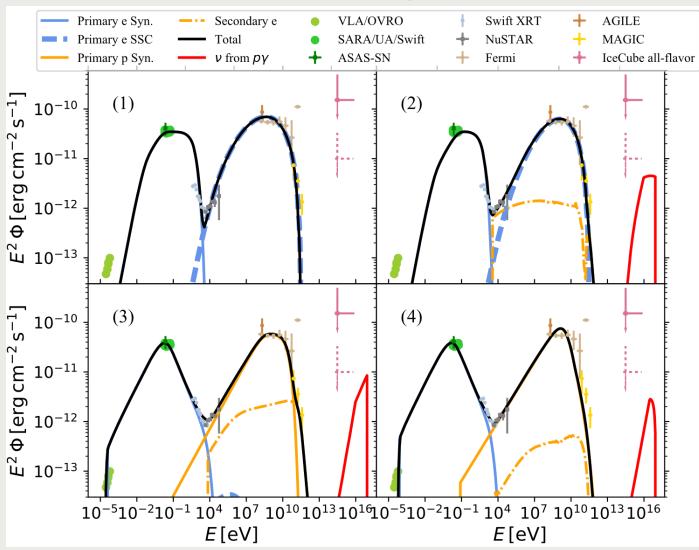
IceCube 2018 Science 361, 1387

Issues with Multi-Zone Models

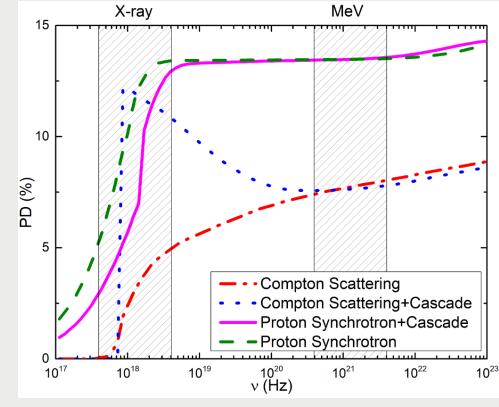

Multi-zone models usually have too many free parameters, diminishing their predictive power.

Parameter	Symbol	Leptonic Value	Hadronic Value
Magnetic field	В	1.5 G	125 G
Radius of emission region	R	$2.51 \times 10^{16} \text{ cm}$	$2.51 \times 10^{16} \text{ cm}$
Multiple for escape timescale	η	15	15
Bulk Lorentz factor	Г	15	15
Observing angle	$\theta_{\rm obs}$	6.66×10^{-2} rad	6.66×10^{-2} rad
Proton injection minimum energy	$\gamma_{\rm p,min}$		1.0
Proton injection maximum energy	$\gamma_{\rm p,max}$		4.85×10^{8}
Proton injection spectral index	q_p		2.25
Proton injection luminosity	$L_{\rm p,inj}$		$3.75 \times 10^{46} {\rm erg \ s^{-1}}$
Electron injection minimum energy	$\gamma_{\rm e, min}$	9.0×10^{2}	5.0×10^{1}
Electron injection maximum energy	$\gamma_{e,\max}$	6.0×10^{4}	2.5×10^{3}
Electron injection spectral index	q_e	2.9	2.9
Electron injection luminosity	L _{e, inj}	$2.45 \times 10^{43} {\rm erg \ s^{-1}}$	$3.64 \times 10^{42} \mathrm{erg \ s^{-1}}$
Supermassive black hole mass	$M_{ m BH}$	$2.0 imes 10^9 \ M_{\odot}$	$2.0 imes 10^9 M_{\odot}$
Eddington ratio	$l_{\rm Edd}$	4.0×10^{-1}	4.0×10^{-1}
Accretion disk luminosity	$L_{ m disk}$	$1.0 imes 10^{46} m erg \ s^{-1}$	$1.0 imes 10^{46} { m erg \ s^{-1}}$
Blob location along the jet axis	$R_{\rm axis}$	0.12 pc	0.12 pc
Radius of broad-line region	$R_{\rm BLR}$	0.25 pc	0.25 pc
Luminosity of broad-line region	$L_{\rm BLR}$	$2.0 \times 10^{45} { m erg s^{-1}}$	$2.0 \times 10^{45} \mathrm{erg \ s^{-1}}$
Ratio of ACC and ESC timescales	$t_{\rm acc}/t_{\rm esc}$	0.1	4.0
Luminosity of magnetic field	L_B	$1.18 \times 10^{45} {\rm erg \ s^{-1}}$	$7.5 \times 10^{48} {\rm erg \ s^{-1}}$
Luminosity of electrons	L_e	$6.11 \times 10^{45} { m erg s}^{-1}$	$4.49 \times 10^{42} \mathrm{erg \ s^{-1}}$
Ratio of magnetic and electron luminosity	ϵ_{Be}	0.19	1.67×10^{6}

Scenario	$K_L (\mathrm{erg} \ \mathrm{s}^{-1})$	K_q	K_B (G)	$K_{t_{\rm acc}}$
Electron (Leptonic)	8.0×10^{44}		-0.9	34.0
Proton (Lepto-hadronic)		-0.3	-50.0	3.0
Electron (Lepto-hadronic)	4.5×10^{43}		-50.0	3.0

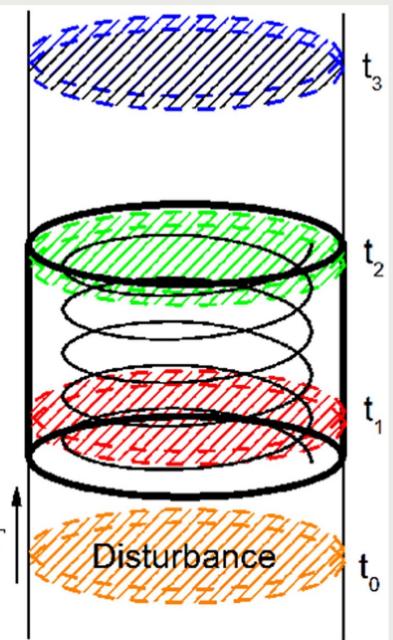


	Parameters for SED Fitting with the Two-zone $p\gamma$ Model								
Free Parameters	$\delta_{\rm D}$	<i>В</i> (G)	R _{out} (cm)	R _{in} (cm)	$L_{e,inj}$ (erg s ⁻¹)	r _{in} AGN (pc)	$n_{\mathrm{e},1}$	$n_{\rm e,2}$	$\gamma_{\rm e,b}$
Values	26.5	0.11	4×10^{16}	1×10^{16}	2×10^{42}	0.05	1.4	4	8.1×10^{3}
Fixed/Derived Parameters	$L_{\rm BLR}^{\rm AGN}$ (erg s ⁻¹)	$L_{\rm p,inj}$ (erg s ⁻¹)	$\gamma_{ m e,min}$	$\gamma_{ m e,max}$	<i>n</i> _p	$\gamma_{ m p,min}$	$\gamma_{ m p,max}$	$L_{\rm e, in}^{\rm k}$ (erg s ⁻¹)	$L_{p,in}^k$ (erg s ⁻¹)
Values	5×10^{43}	2.0×10^{44}	50	10 ⁷	2	1	7.0×10^{6}	3.8×10^{43}	1.3×10^{47}


Xue+ 2019, ApJ 886, 23

Solution: 1. Reduce free parameters; 2. Derive more observable patterns

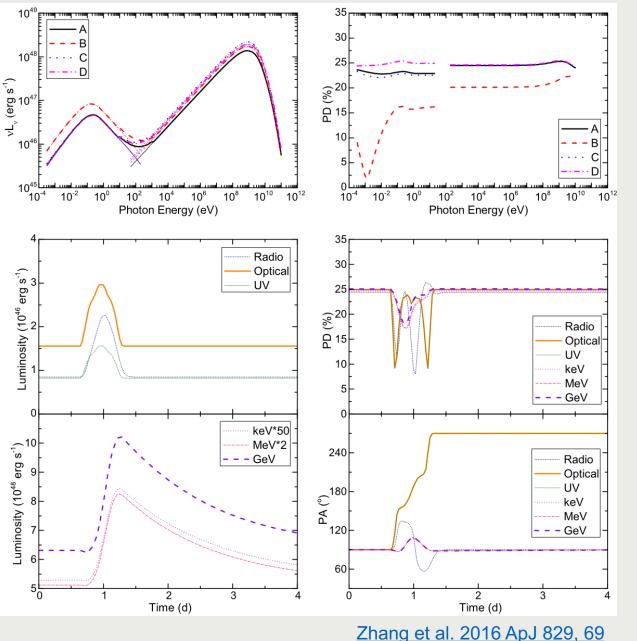
A One-Zone Example


Leptonic and hadronic models cannot be distinguished by spectral fitting only

Zhang et al. 2019 ApJ 876, 109

- 1. Hadronic models predict higher polarization in X-ray and MeV gamma-ray bands.
- 2. MeV polarization can identify proton synchrotron.

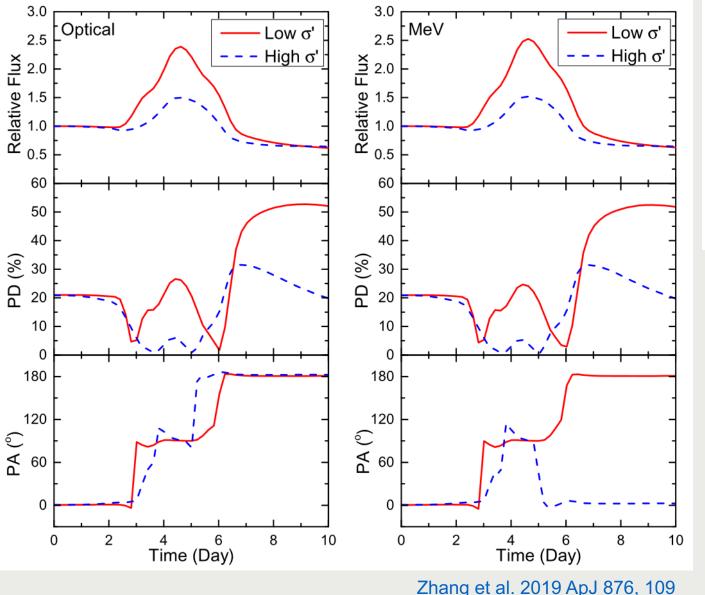
Multi-Zone with Fokker-Planck Particle Evolution

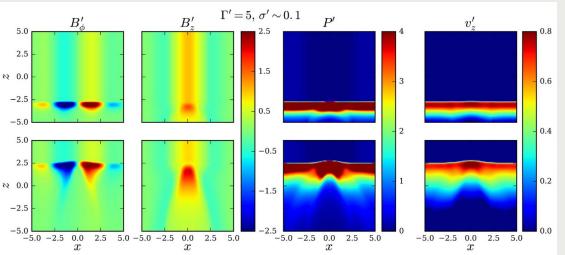


Parameters		Set 1					
Bulk Lorentz factor	ſ	20.0					
Orientation of LOS 6	Pobs (°)	90					
Radius of the emission	on region R (10 ¹⁶ cr	n)			1.0		
Height of the emission	on region $Z (10^{16} \text{ cm})$	n)			1.33		
Acceleration timescal	le $t_{\rm acc} (10^6 {\rm s})$		8.2				
Escaping timescale t_e	$e_{sc} (10^6 s)$		2.0				
Background injection	electron density ra	2.8×10^{-7} 100					
Background injection	electron minimum						
Background injection		10000					
Background injection		,		$2.8 \\ 3 \times 10^{-3} \\ 1 \\ 5 \times 10^{8}$			
Background injection	-	• •	3)				
Background injection	n proton minimum e	energy $\gamma_{p,\min}$					
Background injection		1 '					
Background injection		2.2 50.0					
Helical magnetic field	• •						
Magnetic pitch angle	$\theta_B (\text{deg})$	45					
Parameters	Case 1a	Case 2a	Case 1b	Case 1c	Case 2c	Case 1d	
$t_{\rm acc,d} \ (10^6 {\rm s})$						0.51	
$\dot{u}_{e,\text{inj},d} \text{ (erg s}^{-1} \text{ cm}^{-3}\text{)}$	3.0×10^{-6}	4.1×10^{-9}		1.6×10^{-6}	2.2×10^{-9}		
$\dot{u}_{p,\mathrm{inj},d}$ (erg s ⁻¹ cm ⁻³)	5.5×10^{-2}	9.8×10^{-6}		5.5×10^{-2}	9.6×10^{-6}		
$B_d(G)$	36.6	58.6	136.6				
θ_{B_d} (deg)	75	75	75				

<u>Zhang+ 2016, ApJ 829, 69</u>

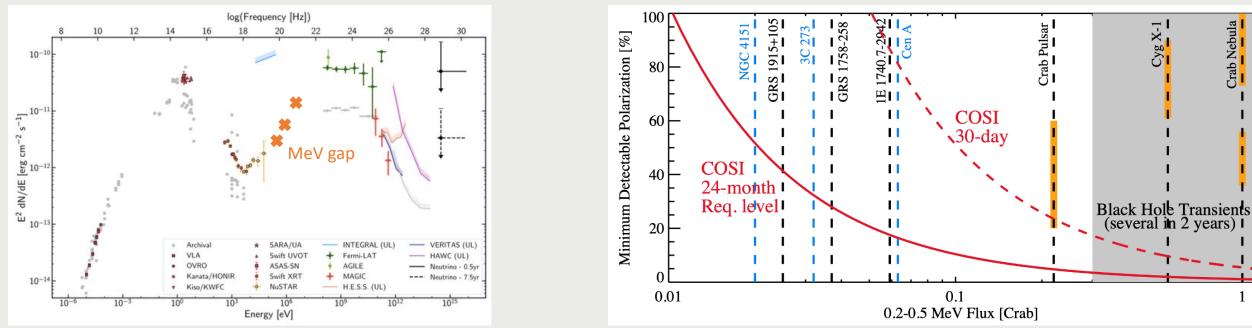
Similar number of free parameters as the one-zone timedependent model.


Multi-Wavelength Signatures

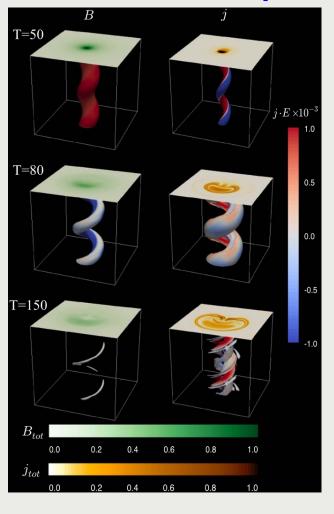


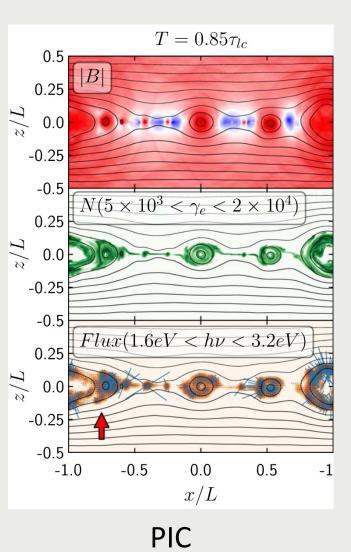
- We can derive all observable signatures, including time-dependent spectra, polarization spectra, multi-wavelength light curves, and polarization curves.
- 2. Unique signatures that are usually unavailable in one-zone models include:
 - Time-symmetric light curves in lowenergy bands
 - Clear time delay between low- and high-energy bands
 - Spectral and temporal polarization signatures

Hadronic X-ray and MeV polarization do not vary much in time, ideal for future detections.

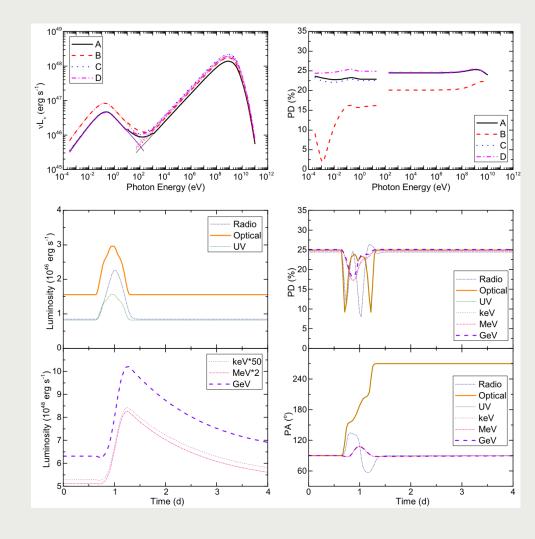

Multi-Zone with MHD

- Fluid parameters such as the magnetic field evolution are calculated under first principles.
- 2. However, particle evolution is not included in this study, as we assume that the light crossing time scale is longer than the proton cooling time scale.


Future Prospect



keV	MeV	ν	Conclusion	
Y	Y	Y	Proton synchrotron, v, UHECR (?)	
Ν	Y	Y	Proton synchrotron, v, UHECR (?)	
Y	Ν	Y	Leptonic+hadronic cascades, v, CR	
Y/N	Y/N	Ν	Unknown mechanism (unlikely) or we need a better IceCube	
Ν	Ν	Y	v is not from the blazar zone	
Ν	Ν	Ν	Pure leptonic	


Flux: HEX-P, COSI, AMEGO-X, Astrogam Polarization: IXPE, eXTP, COSI, AMEGO-X, Astrogam Neutrino: IceCube-Gen2

Future Prospect

Parker Transport

MHD

Radiation Transfer

Time-domain and multi-messenger study of blazar jet requires a multi-scale, multi-physics model