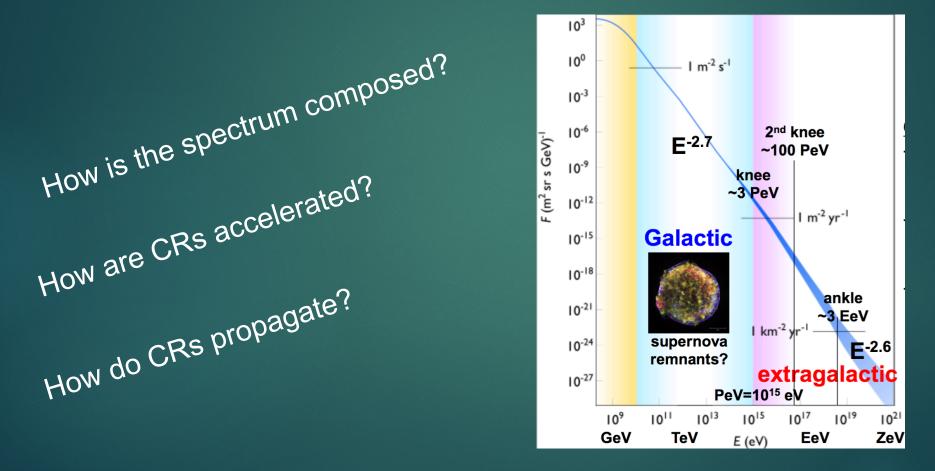
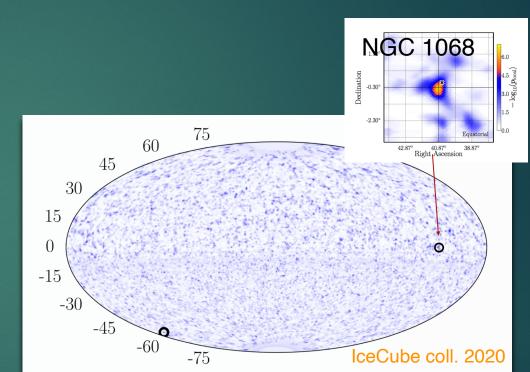
BEGINNING A JOURNEY ACROSS THE UNIVERSE

THE DISCOVERY OF EXTRAGALACTIC NEUTRINO FACTORIES


SARA BUSON UNIVERSITY OF WÜRZBURG

https://sarabuson.github.io/messmapp.htm

LepHad Workshop @Bochum 27.02.2023



Neutrino point-source Searches: Status of Art

Latest (IceCube) searches

- Blind all-sky search (10-years IC data)
- Tested a list of extragalactic candidates. Most significant spots :
 - NGC 1068 (level of 2.9σ), PKS 1424+240, GB6 J1542+6129, TXS 0506+056
- Correlations with tested sources (northern catalog, level of 3.3σ)

- Neither individual neutrino-source detected at high confidence, nor source classes
- Events isotropically distributed (favoring extragalactic origin)

Neutrino point-source Searches: Status of Art

Latest

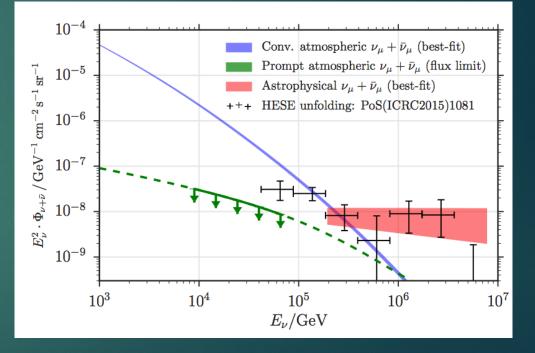
- Sea
- Blind all-sky
- Tested a lis Most signifi
 - NGC 10
 1424+24
 0506+03
- Correlation (northern c)

Evidence for neutrino emission from the nearby active galaxy NGC 1068

IceCube Collaboration*†

NEUTRINO ASTROPHYSICS

A supermassive black hole, obscured by cosmic dust, powers the nearby active galaxy NGC 1068. Neutrinos, which rarely interact with matter, could provide information on the galaxy's active core. We searched for neutrino emission from astrophysical objects using data recorded with the IceCube neutrino detector between 2011 and 2020. The positions of 110 known gamma-ray sources were individually searched for neutrino detector between above atmospheric and cosmic backgrounds. We found that NGC 1068 has an excess of 79^{+22}_{-20} neutrinos at tera–electron volt energies, with a global significance of 4.2σ , which we interpret as associated with the active galaxy. The flux of high-energy neutrinos that we measured from NGC 1068 is more than an order of magnitude higher than the upper limit on emissions of tera–electron volt gamma rays from this source.

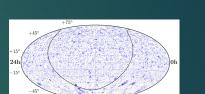

4

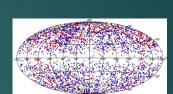
Buson

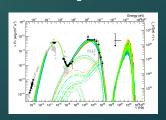
- Neither individual neutrino-source detected at high confidence, nor source classes
- Events isotropically distributed (favoring extragalactic origin)

Neutrino point-source Searches: Status of Art

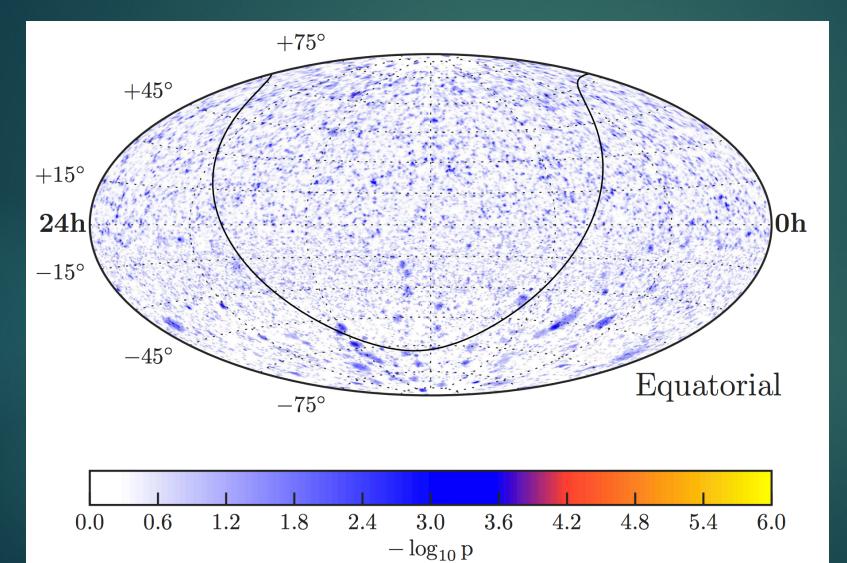
- A significant astrophysical contribution is observed at the highest neutrino energies, ≈100 TeV
 - Diffuse neutrino emission analysis, Northern Hemisphere (2009 – 2015)
 - between 194 TeV and 7.8 PeV
- The observed spectrum is harder in comparison to previous IceCube analyses with lower energy thresholds which may indicate a break in the astrophysical neutrino spectrum of unknown origin




Hypothesis Primers


IceCube neutrino data

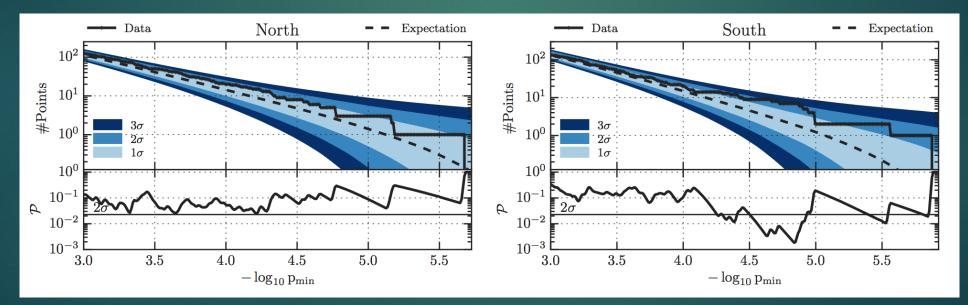
- the 'highest-quality' data for pointsource searches publicly available
- Blazar sample


Exploit blazar theoretical predictions

IceCube Neutrino sky-map

7

S. Buson

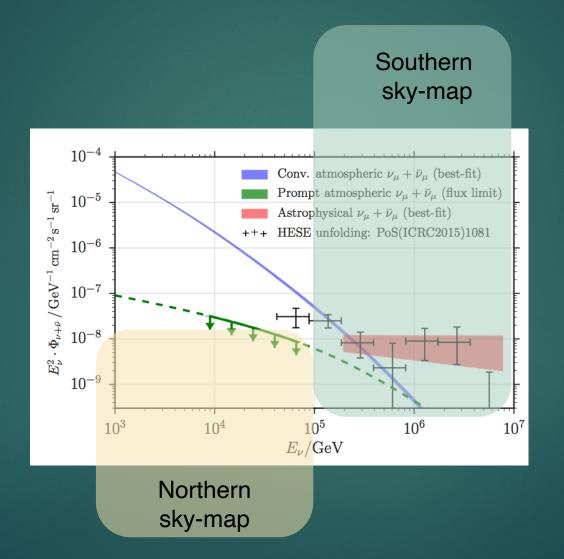

7-year sky map • 2008 - 2015

IceCube coll. 2017

IceCube Neutrino sky-map

IceCube coll. Results:

- No significant excess in the hot-spot all-sky population analysis
 - Many (many!) trials, more than 10⁷ sky locations tested


IceCube coll. 2017

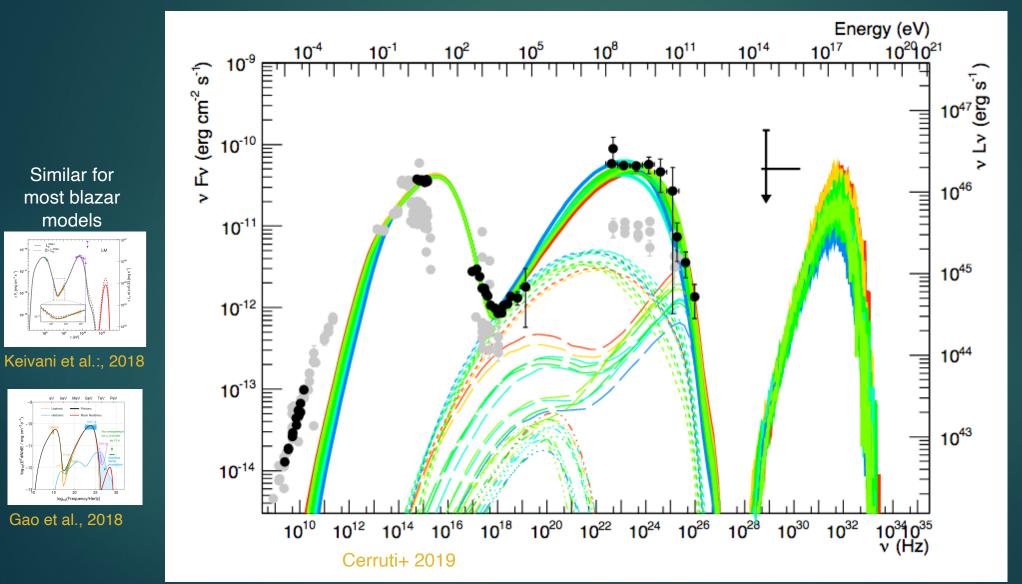
The 7-year IceCube sky-map

Hemisphere	Northern	Southern
Energy range	From ~TeV to <pev< b=""></pev<>	From ≈ 100 TeV, beyond PeV
PWL spectral index for event reconstruction	Trained with either -2 or -2.7	Fixed to -2
Data sensitive to	Both hard- & soft- spectrum point- sources	Optimized for hard- spectrum point-sources

S. Bu

Astrophysical diffuse neutrinos

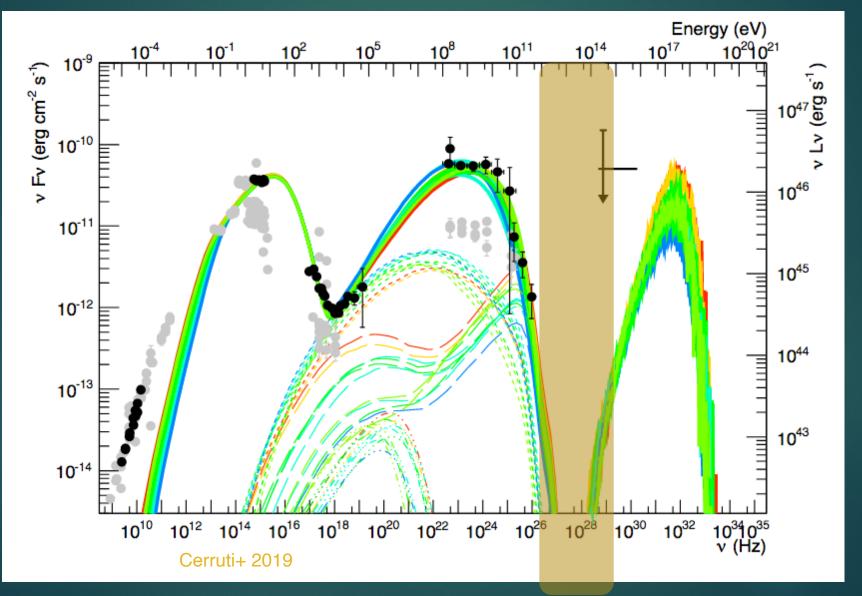
Working Hypothesis:


If blazars are powered by hadronic processes¹
 The emerging spectrum² is hard in the IceCube energy band

- Index <~ -2</p>
- NU energy peak foreseen at ~PeVs

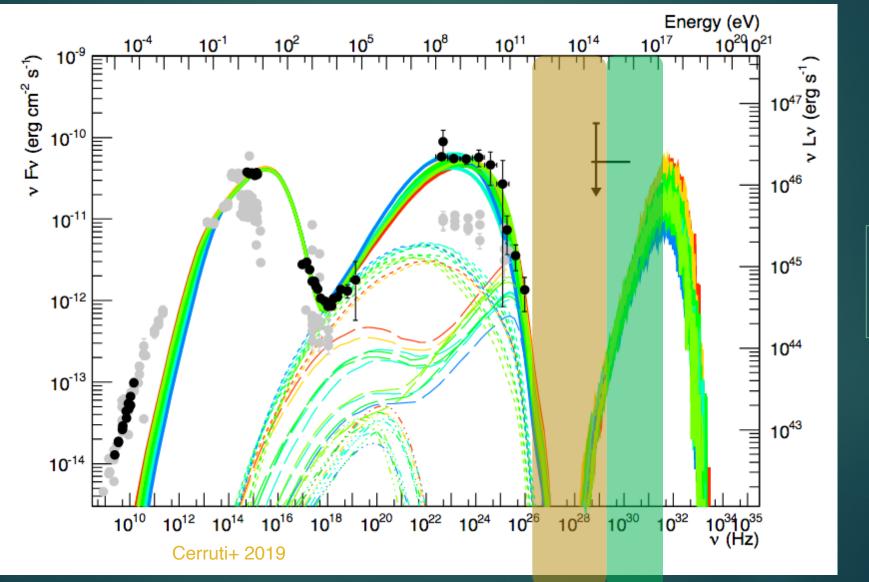
1) At least at some extent

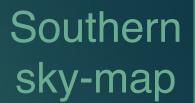
2) **Many references**, e.g. Mannheim 1993; Stecker 2013; Dermer et al. 2014; Murase et al. 2014; Petropoulou et al. 2015; Padovani et al. 2015, Reimer 2015, Keivani et al. 2018, Cerruti et al. 2019, Rodrigues et al. 2021, ..


Blazar (typical) Multi-Messenger SED

Ś

12


Blazar (typical) Multi-Messenger SED


Northern sky-map

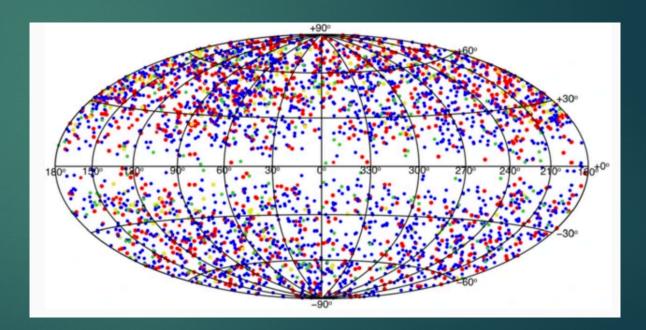
13

Blazar (typical) Multi-Messenger SED

14

Educated Guess

If blazars produce neutrinos, given the data at hand, the IceCube Southern celestial hemisphere is the most promising testing ground

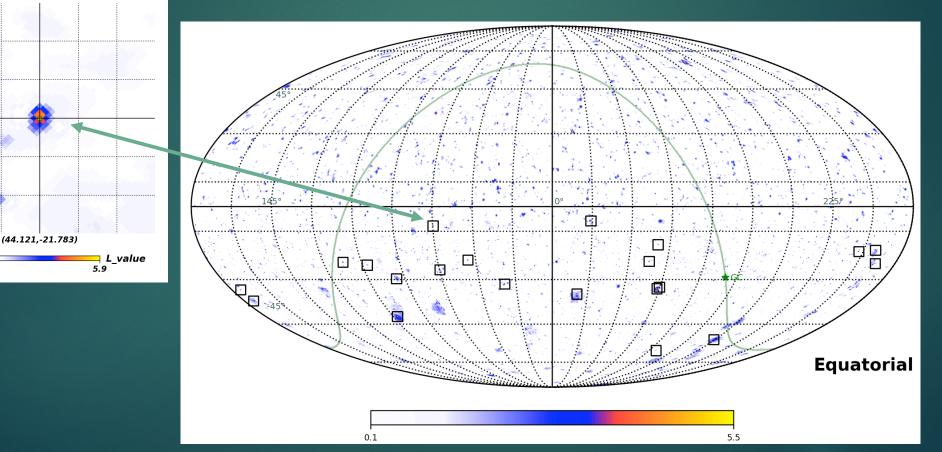

Blazar sample : 5BZCat

Well-defined sample of blazars No preferred selection toward a particular wavelength or survey strategy

16

5BZCat : total of 3561 objects

- After cuts (lbl>10° dec= -5°) :
 - 2191 in northern hemisphere
 - ▶ 1177 in southern hemisphere


Neutrino sky-map (7 yr)

360x360 pix

'/pix,

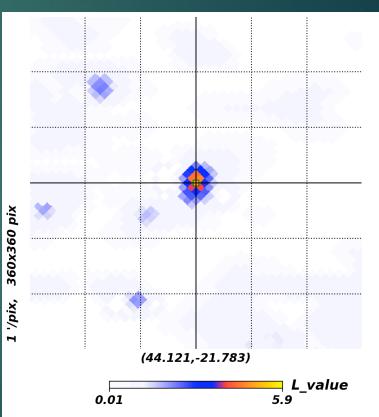
0.01

 Sky-map : 10⁷ pixels (sky locations)
 Focus on the neutrino clusters with strongest deviation from background expectations -- to limit trials

Test a few different (inclusive) neutrino samples

Neutrino spot = i.e. sky-location (pixelmap)

0.1° x 0.1° map resolution

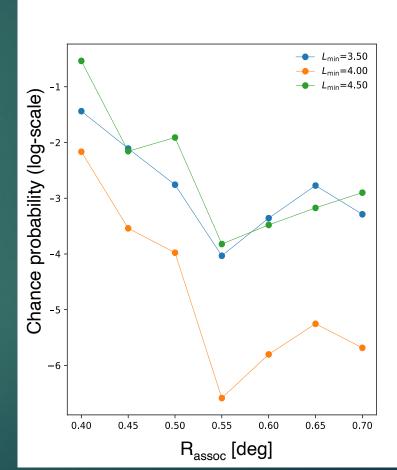

 $L_{\rm min} = \{3.5, 4.0, 4.5\}$

44, 19, 9 neutrino spots
 Out of > 10⁷ pixels (sky locations)

► $R_{assoc} = [0.4^{\circ}, 0.7^{\circ}]$ with steps of 0.05°

Driven by median angular resolution of the neutrino events

Perform positional cross-correlation analysis

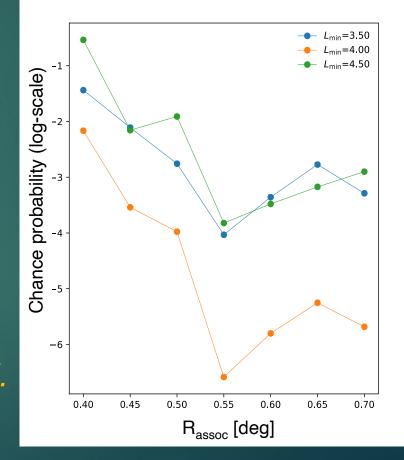


Cross-correlation analysis

Perform positional cross-correlation analysis*

Sky region	5BZCat	Hotspots	Matches	pre-trial p-value	post-trial p-value
Southern sky $(L \ge 4)$	1177	19	10	$3 imes 10^{-7}$	$2 imes 10^{-6}$

Cross-correlation analysis

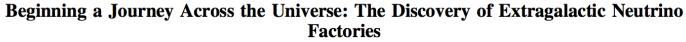

20

Perform positional cross-correlation analysis*

Sky region	5BZCat	Hotspots	Matches	pre-trial p-value	post-trial p-value
Southern sky $(L \ge 4)$	1177	19	10	$3 imes 10^{-7}$	$2 imes 10^{-6}$

- The post-trial p-value is 2 x 10-6
- The minimum pre-trial p-value, 3 x 10⁻⁷, provides us with the strongest potential correlation signal.

*Similar to Finley & Westerhoff 2004; Pierre Auger Collaboration et al. 2008; IceCube Coll. 2016; Resconi et al. 2017; Plavin et al. 2021; Hovatta et al. 2021,...



Extragalactic neutrino factories

THE ASTROPHYSICAL JOURNAL LETTERS, 933:L43 (9pp), 2022 July 10 © 2022. The Author(s). Published by the American Astronomical Society. OPEN ACCESS https://doi.org/10.3847/2041-8213/ac7d5b

o

A. Tramacere

Sara Buson¹^(b), Andrea Tramacere²^(b), Leonard Pfeiffer¹^(b), Lenz Oswald¹^(b), Raniere de Menezes¹^(b), Alessandra Azzollini¹^(b), and Marco Ajello³^(b)

¹ Lehrstuhl für Astronomie, Universität Würzburg, Emil-Fischer-St. 31, Würzburg, D-97074, Germany; sara.buson@uni-wuerzburg.com
 ² Department of Astronomy, University of Geneva, Ch. d'Ècogia 16, Versoix, 1290, Switzerland; andrea.tramacere@unige.ch
 ³ Department of Physics and Astronomy, Clemson University, Kinard Lab of Physics, Clemson, SC 29634-0978, USA
 Received 2022 May 13; revised 2022 June 20; accepted 2022 June 28; published 2022 July 14

ABSTRACT

Neutrinos are the most elusive particles in the Universe, capable of travelling nearly unimpeded across it. Despite the vast amount of data collected, a long standing and unsolved issue is still the association of high-energy neutrinos with the astrophysical sources that originate them. Amongst the candidate sources of neutrinos there are blazars, a class of extragalactic sources powered by supermassive black holes that feed highly relativistic jets, pointed towards the Earth. Previous studies appear controversial, with several efforts claiming a tentative link between high-energy neutrino events and individual blazars, and others putting into question such relation. In this work we show that blazars are unambiguously associated with high-energy astrophysical neutrinos at unprecedented level of confidence, i.e. chance probability of 2×10^{-6} . Our statistical analysis provides the observational evidence that blazars are astrophysical neutrino factories and hence, extragalactic cosmic-ray accelerators.

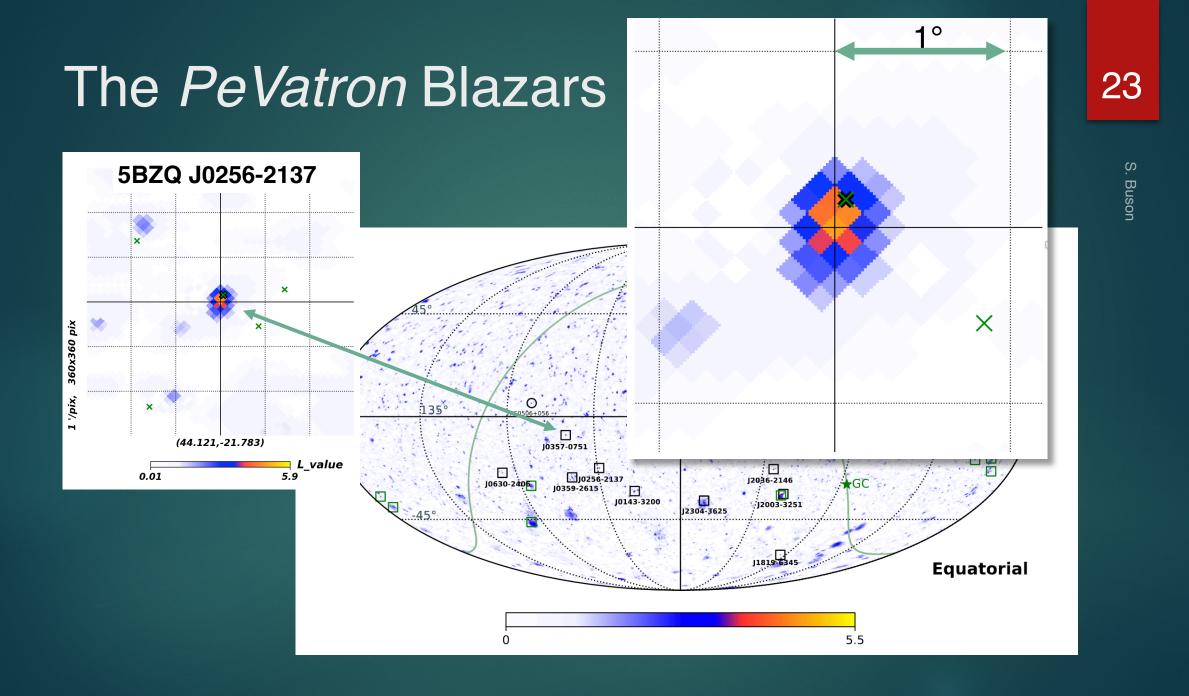
Unified Astronomy Thesaurus concepts: Neutrino astronomy (1100); Neutrino telescopes (1105); Blazars (164); Supermassive black holes (1663); Relativistic jets (1390); Cosmic ray astronomy (324)



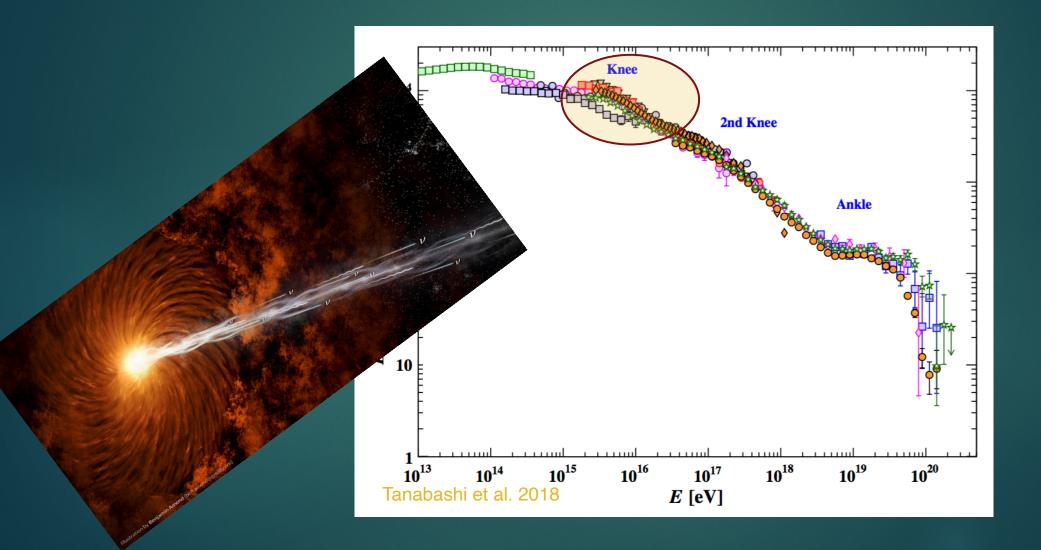
L. Pfeiffer , L. Oswald

R. De Menezes

The PeVatron Blazars


IceCube hotspots				Blazar associations		
	$lpha_{hs}[^\circ]$	$\delta_{hs}[^\circ]$	L	5BZCat	z	Separation[°]
IC J2243-0540	340.75	-5.68	4.012	5BZB J2243-0609	0.30^c	0.47
IC J0359-0746	59.85	-7.78	5.565	5BZQ J0357 - 0751	1.05	0.42
IC J0256-2146	44.12	-21.78	4.873	5BZQ J0256 - 2137	1.47	0.17
IC J $2037 - 2216$	309.38	-22.27	4.664	5BZQ J2036 - 2146	2.299	0.51
IC J0630-2353	97.56	-23.89	4.420	5BZB J0630 $-2406^{a,b}$	$> 1.238^{d}$	0.28
IC J0359 -2551	59.94	-25.86	4.356	5BZB J0359 -2615^{a}	1.47^e	0.40
IC J0145 -3154	26.28	-31.91	4.937	5BZU J0143 -3200^{a}	0.375	0.42
IC J2001 -3314	300.41	-33.24	4.905	5BZQ J2003 - 3251	3.773	0.53
IC J2304-3614	346.03	-36.24	4.025	5BZQ J2304 - 3625	0.962	0.24
IC J1818-6315	274.50	-63.26	4.030	5BZU J1819 - 6345	0.063	0.53
IC J2024–1524	306.12	-15.40	4.454	_	_	_
IC J1256-1739	194.06	-17.66	4.407	_	_	_
IC J1329-1817	202.32	-18.29	4.040	_	_	_
IC J1241-2314	190.37	-23.24	4.288	_	_	_
IC J0538-2934	84.73	-29.57	4.994	_	_	_
IC J2006-3352	301.55	-33.87	4.698	_	_	_
IC J1140-3424	175.17	-34.41	4.082	_	_	_
IC J1138 -3915^{f}	174.64	-39.26	5.885	-	_	_
IC J0628-4616	97.23	-46.28	4.987	_	_	_

S. Buson


22

10 blazars highly likely associated with clusters of IceCube neutrinos

Buson et al. 2022 (ApJL, 933, 43)

Implications to cosmic rays (& more)

Summary & Conclusions

10 PeVatron blazars associated with IceCube high-energy neutrino clusters

- post-trial probability of 2 x 10⁻⁶
- In the blazars' engine, the neutrino emission is weakly related to the observed γray emission, this implies :
 - Different emission sites for the bulk of neutrinos and gamma-rays
 - IceCube neutrinos most promisingly related to the X-ray / MeV (photon) regime
- Firm indirect detection of extragalactic cosmic-ray factories
 - In situ acceleration of cosmic rays to PeV energies and, possibly, up to the EeV regime
- 'Tip of the iceberg': IceCube may be soon sensitive to detect individual pointsources (possibly at high-confidence).

Buson et al. 2022, ApJL, 933, 43