



E5a/

Physik



## A novel interface to hadronic models

Hans Dembinski<sup>1</sup>, Anatoli Fedynitch<sup>2</sup>, Anton Prosekin<sup>2</sup> <sup>1</sup>TU Dortmund, <sup>2</sup>Academia Sinica, Taipei, Taiwan

Astrophysics Workshop on Numerical Multimessenger Modeling, Bochum, Feb 2023

# **Quick facts**



- Python frontend to generators written in Fortran & C++
  - DPMJet-III\*, PhoJet\*, EPOS-LHC, Pythia-6.4, Pythia-8.3, QGSJet\*, QGSJet-II\*, SIBYLL\*, SOPHIA, UrQMD 3.4 (\* = several versions)
  - Use as Python library or command-line interface
- Open source development on Github
  - https://github.com/impy-project/chromo
  - BSD 3-clause license, contributions welcome
- Main authors



- Anatoli Fedynitch (project lead), Hans Dembinski, Anton Prosekin
- Beta status
  - Authors already use it for science projects
  - pip install chromo not yet ready, but coming very soon!
  - For installation from source, see <u>README.md</u>

# Introduction

- Applications in (astro)particle physics require simulations of particle production in interactions of photons, hadrons, and nuclei
  - Cosmic ray propagation through galaxy
  - Air showers
  - Min-bias physics and underlying event at colliders
- No standard event generator (yet)
  - Common: compute result with input from several generators to estimate systematic uncertainty
- Event generators have no standard interface
  - Varying event representations, particle IDs, and data structures
- Most generators implemented in Fortran 77; modern generators in C++
- Majority of scientific computing, education, and data science have moved to Python ecosystem
- Chromo (formerly named impy) provides
  - Standard Python interface over generators
  - Taps into rich Python ecosystem for extra features
  - CLI to generate HepMC & ROOT output or SVG images

### Artist impression of air shower

Image credit: Rebecca Pitt, Discovering Particles, CC BY-ND-NC 2.0





# Supported event generators

- DPMJET-III 3.0.6 & PHOJET 1.12-35
- DPMJET-III 19.1 & PHOJET 19.1
- DPMJET-III 19.3 & PHOJET 19.3
- EPOS-LHC
- PYTHIA 6.4
- PYTHIA 8.3
- QGSJet-01
- QGSJet-II-03
- QGSJet-II-04

- SIBYLL-2.1
- SIBYLL-2.3
- SIBYLL-2.3c
- SIBYLL-2.3d
- SOPHIA 2.0
- UrQMD 3.4

# **Technical concept**



GitHub Actions (CI/CD) Buils, tests, distributes, and deploys the package

## Code example

### **Import libraries**

import chromo from chromo.constants import TeV import numpy as np import boost histogram as bh import matplotlib.pyplot as plt

### Prepare histograms (our choice boost.histogrgam)

pid categories = bh.axis.IntCategory([2212, 111, 211, -211]) hist xf = bh.Histogram(pid categories, bh.axis.Regular(50, -1, 1)) hist eta = bh.Histogram(pid categories, bh.axis.Regular(50, -7, 7))

#### Initialize an event generator instance

kinematics = chromo.kinematics.CenterOfMass(5 \* TeV, "proton", "016") event generator = chromo.models.Sibyll23d(kinematics)

#### Generate 10000 events

for event in event\_generator(10000): event = event.final state() hist\_xf.fill(event.pid, event.xf) # Feynman-x distributions hist\_eta.fill(event.pid, event.eta) # Pseudorapidity distributions

### Plot Feynman-x distribution for protons

xf\_grid = hist\_xf.axes[1] prot hist = hist xf.values(True)[0, 1:-1] prot\_xf\_dist = prot\_hist / 10000 / xf\_grid.widths plt.stairs(prot xf dist, xf grid.edges)



√s, GeV

pp collisions

105

√s, GeV

# Event visualization (via pyhepmc)



- pyhepmc is Scikit-HEP library and frontend to HepMC3 C++ library
- Optional event visualization via Graphviz library

## Output in HepMC3 format (via pyhepmc)

HepMC: Lingua franca for simulation software used at CERN

## SIBYLL-2.1, pp, sqrt(s) = 20 GeV

HepMC::Version 3.02.05 HepMC::Asciiv3-START\_EVENT\_LISTING T SIBYLL\|2.1\| E 0 7 23 U GEV MM P 1 0 2224 -8.9205041527748108e-02 1.3491769134998322e-01 2.0344371795654297e+00 2.3833706378936768e+00 1.2309999465942383e+00 2 P 2 0 111 8.9463070034980774e-02 -4.4863110780715942e-01 3.4179518222808838e+00 3.4519975185394287e+00 1.3496999442577362e-01 2 P 3 0 331 1.4990800619125366e-01 4.6003237366676331e-01 2.0358951091766357e+00 2.3069748878479004e+00 9.5749998092651367e-01 2 P 4 0 221 -1.6207817196846008e-01 -2.4423867464065552e-01 1.9545348882675171e+00 2.0511729717254639e+00 5.4879999160766602e-01 2 P 5 0 -211 -5.2947159856557846e-02 2.5346320867538452e-01 -5.1904711872339249e-02 2.9869863390922546e-01 1.3956999778747559e-01 1 P 6 0 111 -2.4904966354370117e-02 3.6575528979301453e-01 -1.8918764591217041e+00 1.9317893981933594e+00 1.3496999442577362e-01 2 P 7 0 2212 8,9764386415481567e-02 -5,2129906415939331e-01 -7,4990553855895996e+00 7,5760145187377930e+00 9,3826997280120850e-01 1 P 8 1 2212 -1.1027524620294571e-01 9.2852763831615448e-02 1.1708897352218628e+00 1.5073537826538086e+00 9.3826997280120850e-01 1 P 9 1 211 2.1069953218102455e-02 4.2065303772687912e-02 8.6355310678482056e-01 8.7602353096008301e-01 1.3956999778747559e-01 1 P 10 2 22 -1.5905208885669708e-02 -2.5956141948699951e-01 1.9417071342468262e+00 1.9595654010772705e+00 0.000000000000000e+00 1 P 11 2 22 1.0539282113313675e-01 -1.8919278681278229e-01 1.4771823883056641e+00 1.4933792352676392e+00 0.000000000000000e+00 1 P 12 3 211 1.3005101121962070e-02 9.5943860709667206e-02 2.2564361989498138e-01 2.8325849771499634e-01 1.3956999778747559e-01 1 P 13 3 -211 9.5603697001934052e-02 6.0167539864778519e-02 1.2169665843248367e-01 2.1799579262733459e-01 1.3956999778747559e-01 1 P 14 3 221 4.1300963610410690e-02 3.0392596125602722e-01 1.6885783672332764e+00 1.8057471513748169e+00 5.4879999160766602e-01 2 P 15 4 22 -1.3510279357433319e-01 4.4372059404850006e-02 1.5330873727798462e+00 1.5396685600280762e+00 0.0000000000000000e+00 1 P 16 4 22 -2.6978071779012680e-02 -2.8861477971076965e-01 4.2147985100746155e-01 5.1153844594955444e-01 0.000000000000000e+00 1 P 17 6 22 -4.50496450066556647e-02 2.6162242889404297e-01 -1.5857362747192383e+00 1.6078042984008789e+00 0.000000000000000e+00 1 P 18 6 22 2.0137846469879150e-02 1.0423322767019272e-01 -3.0665934085845947e-01 3.2451510429382324e-01 0.000000000000000e+00 1 P 19 14 211 1.6239669173955917e-02 1.1180111020803452e-01 3.0710572004318237e-01 3.5670593380928040e-01 1.3956999778747559e-01 1 P 20 14 -211 -5.0198074430227280e-02 7.7754214406013489e-02 2.6761403679847717e-01 3.1666630506515503e-01 1.3956999778747559e-01 1 P 21 14 111 7.5260899960994720e-02 1.1438217759132385e-01 1.1139335632324219e+00 1.1324540376663208e+00 1.3496999442577362e-01 2 P 22 21 22 6.8888634443283081e-02 -3.4993162844330072e-03 5.4559254646301270e-01 5.5093902349472046e-01 0.000000000000000e+00 1 P 23 21 22 6.3929148018360138e-03 1.1791287362575531e-01 5.6864660978317261e-01 5.8182567358016968e-01 0.000000000000000e+00 1 HepMC::Asciiv3-END EVENT LISTING

# **Command line interface**

- Interface mimics CRMC to ease transition
- Powered by Python libraries: argparse, rich
  - Progress bar with ETA, events / sec
- Generate output in HepMC format, ROOT, or generate SVG images

| env_impy) -bash | -4.2\$ chromo -m sibyll-2.1 -n 10000 -S 1000 -o root -f hey.ro<br> | oot |
|-----------------|--------------------------------------------------------------------|-----|
| Model           | SIBYLL-2.1                                                         |     |
| Projectile      | p (2212)                                                           |     |
| Target          | p (2212)                                                           |     |
| sqrt(s)         | 1000 GeV                                                           |     |
| Collisions      | 10000                                                              |     |
| Seed            | 83207495                                                           |     |
| Format          | root                                                               |     |

| 3       | 6.310E+06     | 11.00 | 267.28 | 174.01 | 36.76 | 0.125  | 0.140     | 8.687      |
|---------|---------------|-------|--------|--------|-------|--------|-----------|------------|
| 3       | 7.943E+06     | 11.38 | 275.24 | 178.72 | 37.64 | 0.125  | 0.133     | 8.756      |
| 3       | 1.000E+07     | 11.77 | 283.28 | 183.48 | 38.54 | 0.125  | 0.126     | 8.819      |
| 10000/1 | L0000         |       |        |        |       | - 100% | ETA 0:00: | :08 1271/s |
| (env_in | npy) -bash-4. | 2\$   |        |        |       |        |           |            |

# Prior work: CRMC

- <u>CRMC</u>: Command-line interface written in C++
  - Used by ATLAS, CMS, LHCb, NA61, TOTEM
- Currently maintained by Tanguy Pierog
  - Former lead developer Ralf Ulrich left scientific community
- Source compilation required, no binary packages
- Output in ROOT, HepMC, LHE formats
  - Heavy dependency: ROOT framework
- No direct access to event record from Python or other language
- No built-in event visualization
- Extra models only in Chromo
  - SIBYLL-(2.1, 2.3, 2.3c), SOPHIA, Pythia-8.3, UrQMD-3.4
- Models not in Chromo
  - HIJING, GHEISHA (outdated), UrQMD 1.3 (outdated)

# Performance

### Table prepared by Anton

## impy is now chromo

|                                         | Sibyll-2.3d                                     | DPMJet-III 19.1                                   | QGSJETII-04                                   | EPOS LHC                                 |
|-----------------------------------------|-------------------------------------------------|---------------------------------------------------|-----------------------------------------------|------------------------------------------|
| IMPY: pyhepmc → ASCII                   | 1116.91 ± 31.41                                 | 474.94 ± 20.55                                    | 264.78 ± 21.61                                | 35.99 ± 2.70                             |
| IMPY: no output                         | 6228.12 ± 281.10                                | 1554.85 ± 272.18                                  | 382.32 ± 18.69                                | 43.23 ± 3.13                             |
|                                         |                                                 |                                                   |                                               |                                          |
|                                         |                                                 |                                                   |                                               |                                          |
|                                         | Sibyll-2.3d                                     | DPMJet-III 19.1                                   | QGSJETII-04                                   | EPOS LHC                                 |
| CRMC: HepMC3 → ASCII                    | Sibyll-2.3d<br>30.24 ± 6.76                     | DPMJet-III 19.1<br>16.57 ± 3.37                   | QGSJETII-04<br>21.09 ± 2.99                   | EPOS LHC<br>11.14 ± 1.14                 |
| CRMC: HepMC3 → ASCII<br>CRMC: no output | Sibyll-2.3d<br>30.24 ± 6.76<br>2602.06 ± 166.96 | DPMJet-III 19.1<br>16.57 ± 3.37<br>914.84 ± 43.42 | QGSJETII-04<br>21.09 ± 2.99<br>305.99 ± 29.15 | EPOS LHC<br>11.14 ± 1.14<br>38.00 ± 6.40 |

in events/sec

## Python libraries can be very fast

- Use Python as glue between fast compiled libraries written in Fortran/C++
- Pass large chunks of data efficiently (as "pointers") as Numpy arrays

## pp collisions at sqrt(s) = 7 TeV: Chromo factor 2 to 35 faster

- Event generation faster in chromo (better optimization?)
- HEPMC output generation faster in pyhepmc

## Caveat: output not exactly identical

- Postprocessing of raw generator output may be different
- But small expected impact on performance

# Summary



- **Easy** comparisons between a wide variety of event generators
- Easy visualization and manipulation of events using rich Python ecosystem
- Easy installation\*: automated packaging and distribution of binaries via PyPI for Linux, MacOS, and Windows (\* = coming very soon)
  - Excellent choice for application and education in (astro)particle physics
- Easy change of simulation settings (on-the-fly)
- Command-line interface
  - Mimics CRMC to ease transition
- Fast thin wrapper, processing optimized
  - Much faster than CRMC
- Output in standard formats
  - HepMC (via pyhepmc), optionally gzipped
  - Root (via uproot)
  - SVG images
- Used in cosmic ray community, high-energy neutrino physics (IceCube), and HEP community (LHCb)
- To-do
  - Finish packaging (supporting Windows is challenging)
  - Add LHE output (via pyhepmc)
  - Add more event generators, e.g. EPOS 4.0

