

Transport of Heavy Cosmic Rays in Evolving Astrophysical Environments

Leptohadronic Propagation Codes | 27.02.2023 L. Merten*, A. Reimer, P. Da Vela, M. Boughelilba, J.P. Lundquist, S. Vorobiov

Contents

Instead of an introduction...

Basics

- Principles and Assumptions of a "Matrix-Multiplication" Code
- CR-ENTREES first glimpse of an upcoming public version

Heavy Nuclei Extension

- Basic Ideas and Structure
- Modular Code in Python

Examples and Testing

• Plots to trigger further discussion

Summary and Outlook

- What's missing?
- What's coming next?

Energy Transport Code

- Main goal: Efficient calculation of spectra \rightarrow Discretization
- $f_i(t) = \int_{E_i}^{E_{i+1}} F(t, E) dE$, vector of number density
- Resolution of 300 bins: $E = (10^{-3} 10^{12})GeV$
- Forward integration of energy transport equation via matrix multiplication:
- $f_i^{\beta}(t + \Delta t) = T_{ij}^{\alpha\beta}(\Delta t)f_i^{\alpha}(t)$, where $T^{\alpha\beta}$ is the energy transition matrix
- $T_{ij}^{\alpha\beta} = Y_{ij}^{\alpha\beta} p(\alpha, i)$, where $Y^{\alpha\beta}$ is the yield and $p(\alpha, i)$ is the interaction probability
- Energy conservation is checked and (can be) enforced
- Interaction probability is calculated based on cross section, target density, etc.
- Yields come from MC simulations and analytical approximations

Time Scales

Problem: Time scales can be very different for involved processes, e.g. electron synchrotron radiation compared to photopion production.

• \rightarrow Time step must be smaller than smallest energy loss scale $\Delta t < \min_{\text{all processes}} \left(\frac{\mathrm{d}E}{\mathrm{d}t}/E\right)^{-1}$

Possible solution: Matrix doubling

• $T(2^n \Delta t) = T^{2n}(\Delta t)$, seems to work if the transition matrix does not significantly change on a time scale of $(2^n \Delta t)$.

Co-funded by the European Union universität

CR-ENTREES

CR-ENTREES – Cosmic-Ray ENergy TRansport in timE-Evolving astrophysical Settings

Implementation of matrix transport principle in Fortran by A. Reimer, R. Protheroe and others

- Now with restructured code, simplified installation and testing
- Will become available

CR-ENTREES – Specifications

Species

 Protons, neutrons, electrons, muons, kaons, pions, photons, electron neutrinos, muon neutrinos, (and adiabatic energy losses)

Interactions

• Bethe-Heitler pair production, photo-pion production, nuclear decay, synchrotron radiation, inverse Compton scattering, $\gamma\gamma$ -Absorption, escape, and adiabatic losses

Targets

• Black body, broken power laws, etc.: discretized on a 161-bin-array.

CR-ENTREES – Installation and Testing

Installation with cmake

lmerten@lmerten-ThinkCentre-M920s: ~/Software/matrixcode/build 🛛 😑 🗉 😒					
File Edit View Search Terminal Help					
CMAKE_BUILD_TYPE	Page 1 of 1				
ENABLE PYTHON	ON				
ENABLE_TESTING	ON				
HDF5_Fortran_LIBRARY_dl	/usr/lib/x86_64-linux-gnu/libdl.so				
HDF5_Fortran_LIBRARY_hdf5 HDF5 Fortran LIBRARY hdf5 fort	/usr/lib/x86_64-linux-gnu/hdf5/serial/libhdf5 /usr/lib/x86_64-linux-gnu/hdf5/serial/libhdf5				
HDF5_Fortran_LIBRARY_m	/usr/lib/x86_64-linux-gnu/libm.so				
HDF5_Fortran_LIBRARY_pthread	/usr/lib/x86_64-linux-gnu/libpthread.so				
HDF5_Fortran_LIBRARY_sz	/usr/lib/x86_64-linux-gnu/libsz.so				
HDF5_FOFTFAN_LIBRARY_Z	/usr/llb/x86_64-llnux-gnu/llbz.so				
CMAKE_BUILD_TYPE: Choose the type	of build, options are: None Debug Release RelW				
Keys: [enter] Edit an entry [d] D	elete an entry CMake Version 3.17.0				
[L] SNOW LOG OUTPUT [C] CONTIGUIE					
[t] Toggle advanced mode (currently off)					

Unit tests

FШF

Der Wissenschaftsfonds

Co-funded by the European Union

lmert	en@lmerten-ThinkC	entre-M920s: ~/So	ftware/matri	xcode/build			
ile Edit View Seard	h Terminal Help:						
merten@lmerten-ThinkCentre-M920s:~/Software/matrixcode/build\$ merten@lmerten-ThinkCentre-M920s:~/Software/matrixcode/build\$ merten@lmerten-ThinkCentre-M920s:~/Software/matrixcode/build\$ merten@lmerten-ThinkCentre-M920s:~/Software/matrixcode/build\$ merten@lmerten-ThinkCentre-M920s:~/Software/matrixcode/build\$ merten@lmerten-ThinkCentre-M920s:~/Software/matrixcode/build\$ merten@lmerten-ThinkCentre-M920s:~/Software/matrixcode/build\$							
est project /home/lmerten/Software/matrixcode/build							
Start 1: baseT 5 Test #1: baseT 5 Start 2: pucle	est est earDecavTest		Passed	98.07 sec			
/5 Test #2: nucle Start 3: photo	arDecayTest PionTest		Passed	10.31 sec			
/5 Test #3: photo Start 4: inver	PionTest seComptonTest		Passed	33.01 sec			
/5 Test #4: inver Start 5: synch	seComptonTest		Passed	48.34 sec			
/5 Test #5: synch	rotronTest		Passed	86.28 sec			
00% tests passed, 0 tests failed out of 5							
otal Test time (real) = 276.01 sec nerten@lmerten-ThinkCentre-M920s:~/Software/matrixcode/build\$							

Several predefined tests are executed included test plots.

universität innsbruck

● SFB1491

Heavy Nuclei

How to include heavier elements?

Problems

- Amount of spectral/transition data will increase by more than two orders in magnitude
- Hardcoded transitions would create an unreadable and unmaintainable software

Solution

- Create a modular object-oriented structure
- Reduces the amount of code significantly
- In general, easier to maintain and extend

Furthermore

• Allow for on-the-fly creation/deletion of spectra \rightarrow Reduction of data

IIIF

Co-funded by

universität innsbruck

SFB149

Structure I

Co-funded by

the European Union

12 Heavy CR Propagation | Lepto-Hadronic Propagation Codes | Lukas.Merten@rub.de

FUF Der Wissenschaftsfonds.

Structure II

) ⊢L

Co-funded by

the European Union

Structure III – Transitions

Co-funded by

Der Wissenschaftsfonds

the European Union

RUB

Heavy CR Propagation | Lepto-Hadronic Propagation Codes | Lukas.Merten@rub.de 14

Co-funded by the European Union

Der Wissenschaftsfonds.

Immediate Interactions

Problem

- Possibly very fast interacting species, e.g., a nuclear decay with very short decay time.
- →Particle species becomes irrelevant after few time steps but consumes the same amount of computation time and memory.

Solution

- Sustainably remove the species from the simulation chain
- Making sure to not produce it again
- Not neglecting the channel to (possibly stable) secondaries of unstable particle

Co-funded by the European Union

Structure IV – Immediate Interactions

 $T_{\rm AC} = T_{\rm SC}^* T_{\rm AS}$, with $T_{\rm SC}^*$ the transition matrix recalculated with $\Delta t = \infty$

Immediate Interaction

Benefits

- Reduces significantly the number of simultaneously tracked species
- Reduces the memory usage
- Increases the propagation cycles per time
- Slightly reduces hard disk space of simulation results. HDF does an amazing compression, which limits the benefits on that point.

Current implementation

• Int. probability $p_{int}(E) = 1 - \exp\left(-\frac{\Delta t}{\tau_{int}(E)}\right) > 0.95 \forall E < E_{max} \rightarrow unstable$

Co-funded by

universität innsbruck

SFB149

- Recalculate transitions of unstable species
- If parents available: Recalculate parents' transitions
- Remove species from simulation before next step

Examples and Testing

Nuclear Decay – Neutron

Initial condition: $\Delta t = 10^{12}$ s, N = 100Target: CMB Primary species: neutron, with $\gamma = -2$, $E_{min} = 1$ GeV, $E_{max} = 8 \times 10^{11}$ GeV

ΓШΓ

Co-funded by

the European Union

Photo-Meson Production

Initial condition: $\Delta t = 10^{12}$ s, N = 100Target: CMB Primary species: neutron, with $\gamma = -2$, $E_{min} = 1$ GeV, $E_{max} = 8 \times 10^{11}$ GeV

ΓШΓ

Der Wissenschaftsfond

Co-funded by

the European Union

Photo-Meson Production

Initial condition: $\Delta t = 10^{12}$ s, N = 100Target: CMB Primary species: neutron, with $\gamma = -2$, $E_{min} = 1$ GeV, $E_{max} = 8 \times 10^{11}$ GeV

Decay of unstable particles is included.

universität innsbruck RUB

FШF

Co-funded by

the European Union

Summary and Outlook

Summary I

CR-ENTREES is (almost) ready for publication

Modular structure

Heavy Elements will be treated in an all new python version

• Computation intensive calculation (transition matrices) in Fortran \rightarrow wrapping with f2py

Output is in hdf format

• Fast, good compression, allows for useful meta data storage

Allows for an arbitrary number of species

Species, Targets and Interaction can be "freely" combined

Summary II – Interactions

25 Heavy CR Propagation | Lepto-Hadronic Propagation Codes | Lukas.Merten@rub.de

FШF

Der Wissenschaftsfonds.

Slovenian Research Agency

universität innsbruck

Summary III

Species are added/deleted on the fly

- Reduction of computation time and storage
- Testing in progress \rightarrow might be inefficient for non-linear set ups

Non-linearity

- Updates of target field based on x-ray flux
- Work in progress

Documentation

- Mainly based on docstrings in the modules, classes, function
- Example jupyter notebook

Implementation of missing interactions

Code cleaning

Comparison with existing codes

FUF Der Wissenschaftsfonds.

Co-funded by

the European Union

Tests – Nuclear Decay

Tests – Photo-Meson-Production

Comparison with semianalytic models of Kelner & Aharonian (2008) Allows only to compare the normalization as both approaches are based on SOPHIA

Co-funded by

the European Union

Tests – Inverse Compton Scattering

Co-funded by

the European Union

Der Wissenschaftsfonds.

Tests – Synchrotron Radiation

Co-funded by

the European Union

Der Wissenschaftsfonds.

