

Modeling the Hadronic Cascade Emission from Neutrino-Emitting TDEs

Chengchao Yuan

LepHad Workshop, Bochum, 2023/02/28

HELMHOLTZ

Tidal disruption events

When a massive star passes close enough to a SMBH

- The star can be ripped apart by the tidal force
- ~ half of the star's mass remains bounded by the SMBH gravitational force
- Mass accretion -> months/year-long flare
- Multi-wavelength black body (bb) emissions in optical/ UV (OUV) bands.
- Some TDEs are observed in X-ray and infrared (IR) ranges, e.g., AT2019dsg (Stein et al. 2021)

Tidal disruption events

- In addition to the EM signatures, neutrinos might be produced in the accretion disks, disk winds, or jets
- Three TDEs may be associated with IceCube neutrino

AT2019dsg

- ZTF (optical: g, r) + Swift UVOT (UV)
- Swift-XRT/XMM-Newton: X-ray (0.3-10 keV)
- $z \sim 0.051$, $d_L \sim 230$ Mpc

Measured black body spectra:

- X-ray: $T_X = 72 \text{ eV}$, from hot accretion disk
- OUV: $T_{OUV} = 3.4 \text{ eV}$, from photosphere (nearly constant)

Dust Echo: infrared (IR) emission

X-ray/OUV photons heat the dust torus

- -> thermal IR emission
- could be detected as the delayed IR emission
- feeds IR photons back to the wind/outflow envelope
- temperature $T_{\rm IR} \lesssim 0.16~{\rm eV}$ (Reusch et al. 2022)
- IR luminosity can be obtained by convolving $L_{\rm OUV}$ with a box function B(T), e.g., (Reusch et al. 2022, Winter & Lunardini 2022) $L_{\rm IR}(t) \propto \int L_{\rm OUV}(t')B(t-t')dt'$

Proton injection

Four parameters: $E_{p,\min} \sim 1$ GeV, spectra index $p = 2, E_{p,\max}$ (free-param), normalization factor

AT2019dsg: $M_{\rm SMBH} \simeq 5 \times 10^6 M_{\odot}$ (van Velzen et al. 2021)

We use four parameters to determine the proton injection (do not specify the accelerator)

- Normalization $dE_p E_p \dot{Q}(E_p) = L_p / (4\pi R^3/3)$
- $L_p(t) = \varepsilon_{\text{diss}} \dot{M}_{\star}(t) c^2$

Assumptions

- $\dot{M}_{\star}(t)/L_{\text{OUV}}(t) = \text{const}$
- $\dot{M}_{\star,\text{peak}}/L_{\text{Edd}} = 100$
- Proton diffusion in Bohm regime $D = R_L c$

Radiation processes

Neutrino production:
$$p\gamma/pp \rightarrow \pi^{\pm} \rightarrow \nu_{e}\bar{\nu}_{e}\nu_{\mu}\bar{\nu}_{\mu}$$

synchrotron/SSC: $(e^{\pm}) \xrightarrow{B}_{\text{magnetic field}} (e^{\pm})' + \gamma, \ (e^{\pm})' + \gamma \rightarrow (e^{\pm})'' + \gamma'$
Proton synchrotron: $p \xrightarrow{B}_{\text{magnetic field}} \gamma + p'$
Cascade processes: $\pi^{0} \rightarrow 2\gamma$
 $p\gamma_{\text{bb}}/pp \rightarrow \pi^{\pm} \rightarrow (\mu^{\pm})(e^{\pm}) \xrightarrow{B}_{\text{magnetic field}} (\mu^{\pm})'(e^{\pm})' + \gamma, \ (e^{\pm})' + \gamma \rightarrow (e^{\pm})'' + \gamma'$
 $\gamma\gamma \rightarrow (e^{\pm}) \xrightarrow{B}_{\text{magnetic field}} (e^{\pm})' + \gamma, \ (e^{\pm})' + \gamma \rightarrow (e^{\pm})'' + \gamma'$
 $p\gamma_{\text{bb}} \rightarrow p'(e^{\pm}) \xrightarrow{B}_{\text{magnetic field}} (e^{\pm})' + \gamma, \ (e^{\pm})' + \gamma \rightarrow (e^{\pm})'' + \gamma'$

Particle cooling: \mathbf{n}' $\rightarrow (e^{\pm})' \rightarrow (e^{\pm})''$ $\rightarrow (\mu^{\pm})'$

Radiation processes

Neutrino production:
$$p\gamma pp \rightarrow \pi^{\pm} \rightarrow \nu_e \bar{\nu}_e \nu_\mu \bar{\nu}_\mu$$

synchrotron/SSC: $(e^{\pm}) \xrightarrow{B}_{\text{magnetic field}} (e^{\pm})' + \gamma$, $(e^{\pm})' + \gamma \rightarrow (e^{\pm})'' + \gamma'$
Proton synchrotron: $p \xrightarrow{B}_{\text{magnetic field}} \gamma + p'$
Cascade processes: $\pi^0 \rightarrow 2\gamma$
 $p\gamma_{\text{bb}}/pp \rightarrow \pi^{\pm} \rightarrow (\mu^{\pm})(e^{\pm}) \xrightarrow{B}_{\text{magnetic field}} (\mu^{\pm})'(e^{\pm})' + \gamma$, $(e^{\pm})' + \gamma \rightarrow (e^{\pm})'' + \gamma'$
 $\gamma\gamma \rightarrow (e^{\pm}) \xrightarrow{B}_{\text{magnetic field}} (e^{\pm})' + \gamma$, $(e^{\pm})' + \gamma \rightarrow (e^{\pm})'' + \gamma'$
 $p\gamma_{\text{bb}} \rightarrow p'(e^{\pm}) \xrightarrow{B}_{\text{magnetic field}} (e^{\pm})' + \gamma$, $(e^{\pm})' + \gamma \rightarrow (e^{\pm})'' + \gamma'$

Particle cooling:

AM3: a time-dependent LepHad code

Numerically solving the coupled PDEs for electron, proton, and photon distributions. (Gao et al. 2017)

 $\partial_t n(\gamma, t) = -\partial_\gamma \{ \dot{\gamma}(\gamma, t) n(\gamma, t) - \partial_\gamma [D(\gamma, t) n(\gamma, t)]/2 \} - \alpha(\gamma, t) n(\gamma, t) + Q(\gamma, t)$ Cooling Diffusion Escape/Advection Injection

To turn on/off each process:

sim_process_ac = 1; sim process_in = 2; sim_process_ic = 1; $sim_process_sy = 1;$ $sim_process pp = 1;$ $sim_process bh = 1;$ $sim_process_pg = 1;$ $sim_process_es = 1;$ sim process_psy = 1; sim_process_pic = 1 ; sim_process_sy_mu = 1; sim_process_ic_mu = 1; sim_process_sy_pi = 1; sim_process_ic_pi = 1;

AM3: a time-dependent LepHad code

Numerically solving the coupled PDEs for electron, proton, and photon distributions. (Gao et al. 2017)

 $\partial_t n(\gamma, t) = -\partial_\gamma \{ \dot{\gamma}(\gamma, t) n(\gamma, t) - \partial_\gamma [D(\gamma, t) n(\gamma, t)]/2 \} - \alpha(\gamma, t) n(\gamma, t) + Q(\gamma, t)$ Cooling Diffusion Escape/Advection Injection

To turn on/off each process:

sim_process_ac = 1; sim process_in = 2; sim_process_ic = 1; $sim_process_sy = 1;$ $sim_process pp = 1;$ $sim_process bh = 1;$ $sim_process_pg = 1;$ $sim_process_es = 1;$ sim process_psy = 1; sim_process_pic = 1 ; sim_process_sy_mu = 1; sim_process_ic_mu = 1; sim process sy pi = 1; sim_process_ic_pi = 1;

AM3: a time-dependent LepHad code

Numerically solving the coupled PDEs for electron, proton, and photon distributions. (Gao et al. 2017)

 $\partial_t n(\gamma, t) = -\partial_\gamma \{ \dot{\gamma}(\gamma, t) n(\gamma, t) - \partial_\gamma [D(\gamma, t) n(\gamma, t)]/2 \} - \alpha(\gamma, t) n(\gamma, t) + Q(\gamma, t)$ Cooling Diffusion Escape/Advection Injection

To turn on/off each process:

sim_process_ac = 1; sim_process_in = 2; sim_process_ic = 1; sim_process_sy = 1; $sim_process pp = 1;$ $sim_process bh = 1;$ $sim_process_pg = 1;$ $sim_process_es = 1;$ sim process_psy = 1; sim_process_pic = 1 ; sim_process_sy_mu = 1; sim_process_ic_mu = 1; sim_process_sy_pi = 1; sim process_ic_pi = 1;

Hadronic cascade spectra: M-IR (dust echo)

*p*γ optically thin: ($\pi^{\pm} \rightarrow e^{\pm} \rightarrow SY/IC$) + (γγ $\rightarrow e^{\pm} \rightarrow SY/IC$)

DESY. | Cascade Emissions of TDEs | Chengchao Yuan, 2023/02/28

Hadronic cascade spectra: M-IR (dust echo)

*p*γ optically thin: $(\pi^{\pm} \rightarrow e^{\pm} \rightarrow SY/IC) + (\gamma\gamma \rightarrow e^{\pm} \rightarrow SY/IC)$

Temporal signatures: M-IR

Dust echo scenario: $\varepsilon_{diss} = 0.2, B = 0.1$ G, $R = 5 \times 10^{16}$ cm, $E_{p,max} = 5 \times 10^9$ GeV

Fermi-LAT uplimit (0.1 - 800 GeV)

Interval	MJD Start	MJD Stop	UL
			$[{\rm erg}~{\rm cm}^{-2}~{\rm s}^{-1}]$
G1	58577	58707	2.6×10^{-12}
G2	58707	58807	1.2×10^{-11}
G3	58577	58879	2.0×10^{-12}

Extended Data Fig. 7 | Gamma-ray energy flux upper-limits for AT2019dsg. The values are derived assuming a point-source with power-law index Γ =2.0 at the position of AT2019dsg, integrated over the analysis energy range 0.1-800 GeV.

Consistent with Fermi UL., but predicts a low neutrino number

~50 days time delay is compatible with $p\gamma$ interaction time $t_{p\gamma} \sim 10 - 100 \ {\rm d}$

Hadronic cascade spectra: M-OUV

*p*γ optically thick: ($\pi^{\pm} \rightarrow e^{\pm} \rightarrow SY/IC$) + (γγ $\rightarrow e^{\pm} \rightarrow SY/IC$)

Parameters: $\varepsilon_{\text{diss}} = 0.2$ $B = 0.1 \text{ G}, R = 5 \times 10^{14} \text{ cm}, E_{p,\text{max}} = 1 \times 10^8 \text{ GeV}$

- Small *R* leads to fast proton escape • $E_{p\gamma,\min} \sim 10^{6-7} \text{ GeV}$
- Synchrotron peak energy > GeV
- Attenuated before reaching the peak -> spikes
- Promising neutrino emitter in the neutrino energy range

Temporal signatures: M-OUV

Compact region: $\varepsilon_{\text{diss}} = 0.2, B = 0.1 \text{ G}, R = 5 \times 10^{14} \text{ cm}, E_{p,\text{max}} = 1 \times 10^8 \text{ GeV}$

In this compact and dense region, interactions occur very fast

- $p\gamma$ optically thick: $t_{p\gamma}^{-1}/t_{fs}^{-1} > 1$
- no significant time delay
- Cascade emission peaks in LAT energy range -> overshooting the γ -ray limits

Constraints on $E_{p,\max}$ and B

Obscured radiation region may be able to solve the missing γ -ray problem.

CRs are more confined with a stronger magnetic field, which enables a less compact region to be a promising neutrino emitter. (Easier to overshoot γ -ray uplimits)

- EM/hadronic cascade processes in TDE winds can produce detectable X-ray/ γ -ray emissions, e.g., M-IR (dust echo scenario). But so far no γ -ray has been detected!
- Significant (~10-100 days) time delay is expected in the $p\gamma$ optically thin regime.
- To explain the neutrino coincidence, very efficient energy dissipation to CRs and compact/dense radiation region are needed. The accompanying cascade emission will unavoidably overshoot the X-ray/γ-ray constraints.
- γ -ray obscured/hidden models may solve the missing γ -ray problem.
- It might be interesting the explore the time-dependent LepHad cascade signatures in jetted TDEs, e.g., AT2022cmc.
- Collaborations in future TDE projects