SOPRANO : numerics

Damien Bégué

Bar Ilan University
28/02/2023

With Sargis Gasparyan and Narek Sahakyan

The model : a blob

- No geometry : a blob of (constant) radius R moving with (constant) Lorentz factor Γ.
- A (constant) magnetic field threads the blob.
- Injection of particles.
- Track the particles with their secondaries for 1 dynamical time scale.
- It is also possible to include escape and track the emitting zone for longer.

The processes

- Leptonic (electrons/positrons):
- Synchrotron (no self-absorption for now)
- Inverse Compton
- Pair production (but no annihilation for now)

The processes

- Leptonic (electrons/positrons):
- Synchrotron (no self-absorption for now)
- Inverse Compton
- Pair production (but no annihilation for now)
- Hadronic (protons/neutrons/pions/muons/neutrino):
- Synchrotron
- Photomeson production
- Photonpair production (BH)
- Decay

चดe Processes

- Leptonic (electrons/positrons):
- Synchrotron (no self-absorption for now)
- Inverse Compton
- Pair production (but no annihilation for now)
- Hadronic (protons/neutrons/pions/muons/neutrino):
- Synchrotron
- Photomeson production
- Photonpair production (BH)
- Decay
- Photons:
- Produced by synchrotron of all charged particles
- Scattered by IC (no cooling of photons)
- Annihilation
- Produced by neutral pion decay

Kinetic equations

$$
\begin{aligned}
& \frac{\partial N_{p}}{\partial t}=C_{p \gamma \rightarrow p \pi}+C_{p \gamma \rightarrow e^{+} e^{-}}+C_{\text {synch }}-S_{\gamma p \rightarrow n \pi}+Q_{\gamma n \rightarrow p \pi} \\
& \frac{\partial N_{n}}{\partial t}=-S_{n \gamma \rightarrow p \pi}+Q_{p \gamma \rightarrow n \pi}+C_{n \gamma \rightarrow n \pi} \\
& \frac{\partial N_{\pi_{ \pm}}}{\partial t}=Q_{p \gamma \rightarrow \pi}+Q_{n \gamma \rightarrow \pi}-S_{\pi}+C_{\mathrm{synch}} \\
& \frac{\partial N_{\mu}}{\partial t}=Q_{\pi_{ \pm}}-S_{\mu}+C_{\text {synch }} \quad \text { C : diffusion-type equation } \\
& \frac{\partial N_{\nu, \zeta}}{\partial t}=Q_{\pi_{+}}+Q_{\mu} \quad \mathrm{S}: \text { sink term "exponential-like" } \\
& \text { R_IC : integro-differential } \\
& \frac{\partial n_{\mathrm{ph}}}{\partial t}=-S_{\gamma \gamma \rightarrow e^{+} e^{-}}+Q_{\pi_{0}}+R_{\mathrm{IC}}+\sum_{i} Q_{\mathrm{synch}}^{i} \\
& \frac{\partial N_{\mathrm{e}^{ \pm}}}{\partial t}=Q_{\mu}+Q_{p \gamma \rightarrow e^{+} e^{-}}+Q_{\gamma \gamma \rightarrow e^{+} e^{-}} C_{\mathrm{IC}}+C_{\mathrm{synch}}
\end{aligned}
$$

Numerical discretization

- DG 1st order, finite volume : natural conservation of particle number (when required).
- Second order would be possible but large changes to the code would be required.

Numerical discretization

- DG 1st order, finite volume : natural conservation of particle number (when required).
- Second order would be possible but large changes to the code would be required.
- Widely different time scales require implicit method.

Numerical discretization

- DG 1st order, finite volume : natural conservation of particle number (when required).
- Second order would be possible but large changes to the code would be required.
- Widely different time scales require implicit method.
- Positivity of distribution function requires CC-like scheme (+ 1 ${ }^{\text {st }}$ order backward Euler).

Numerical discretization

- DG 1st order, finite volume : natural conservation of particle number (when required).
- Second order would be possible but large changes to the code would be required.
- Widely different time scales require implicit method.
- Positivity of distribution function requires CC-like scheme (+ 1 ${ }^{\text {st }}$ order backward Euler).
- Non-linear system :
- treated as semi-implicit for photopair and photopion.
- fully implicit for leptonic processes.

Numerical discretization

- DG 1st order, finite volume : natural conservation of particle number (when required).
- Second order would be possible but large changes to the code would be required.
- Widely different time scales require implicit method.
- Positivity of distribution function requires CC-like scheme (+ 1 ${ }^{\text {st }}$ order backward Euler).
- Non-linear system :
- treated as semi-implicit for photopair and photopion.
- fully implicit for leptonic processes.
- Energy is conserved by balancing cooling/heating and particle creation.

Numerical discretization

Energy grid

Numerical discretization

Energy grid

Example of discretization : py interation

$$
\begin{gathered}
\frac{\partial N_{i}}{\partial t}\left(E_{i}\right)=S_{i}\left(E_{i}\right) \\
S_{i}\left(E_{i}\right)=\int_{E_{p}^{\prime} \geq E_{i}} d E_{p}^{\prime} \frac{c N\left(E_{p}^{\prime}\right)}{2 \gamma_{p}^{\prime 2} \beta_{p}^{\prime}} \int_{\epsilon} d \epsilon \frac{n}{\epsilon^{2}} \int d \epsilon_{r} \epsilon_{r} \int_{\psi} d \psi M_{i} \frac{\partial \sigma_{p \gamma}\left(\epsilon_{r}, \psi\right)}{\partial \psi} \delta\left(E_{i}-\xi_{i}\left(\psi, E_{p}^{\prime}, \epsilon\right) E_{p}^{\prime}\right)
\end{gathered}
$$

Example of discretization : py interation

$$
\begin{gathered}
\frac{\partial N_{i}}{\partial t}\left(E_{i}\right)=S_{i}\left(E_{i}\right) \\
S_{i}\left(E_{i}\right)=\int_{E_{p}^{\prime} \geq E_{i}} d E_{p}^{\prime} \frac{c N\left(E_{p}^{\prime}\right)}{2 \gamma_{p}^{\prime 2} \beta_{p}^{\prime}} \int_{\epsilon} d \epsilon \frac{n}{\epsilon^{2}} \int d \epsilon_{r} \epsilon_{r} \int_{\psi} d \psi M_{i} \frac{\partial \sigma_{p \gamma}\left(\epsilon_{r}, \psi\right)}{\partial \psi} \delta\left(E_{i}-\xi_{i}\left(\psi, E_{p}^{\prime}, \epsilon\right) E_{p}^{\prime}\right) \\
\int_{K_{\pi}} L_{0, K_{\pi}}\left(E_{\pi}\right) \frac{\partial N_{\pi}}{\partial t}\left(E_{\pi}\right) d E_{\pi}=\frac{\partial N_{\pi}^{K_{\pi}}}{\partial t} \times \int_{K_{\pi}} L_{0, K_{\pi}}^{2}\left(E_{\pi}\right) d E_{\pi}=\frac{\partial N_{\pi}^{K_{\pi}}}{\partial t}
\end{gathered}
$$

Example of discretization : py interation

$$
\begin{aligned}
& \frac{\partial N_{i}}{\partial t}\left(E_{i}\right)=S_{i}\left(E_{i}\right) . \\
& S_{i}\left(E_{i}\right)=\int_{E_{p}^{\prime} \geq E_{i}} d E_{p}^{\prime} \frac{c N\left(E_{p}^{\prime}\right)}{2 \gamma_{p}^{\prime 2} \beta_{p}^{\prime}} \int_{\epsilon} d \epsilon \frac{n}{\epsilon^{2}} \int d \epsilon_{r} \epsilon_{r} \int_{\psi} d \psi M_{i} \frac{\partial \sigma_{p \gamma}\left(\epsilon_{r}, \psi\right)}{\partial \psi} \delta\left(E_{i}-\xi_{i}\left(\psi, E_{p}^{\prime}, \epsilon\right) E_{p}^{\prime}\right) \\
& \stackrel{\nabla}{V} \\
& \int_{K_{\pi}} L_{0, K_{\pi}}\left(E_{\pi}\right) \frac{\partial N_{\pi}}{\partial t}\left(E_{\pi}\right) d E_{\pi}=\frac{\partial N_{\pi}^{K_{\pi}}}{\partial t} \times \int_{K_{\pi}} L_{0, K_{\pi}}^{2}\left(E_{\pi}\right) d E_{\pi}=\frac{\partial N_{\pi}^{K_{\pi}}}{\partial t} \\
& =\int_{K_{\pi}} d E_{\pi} L_{0, K_{\pi}}\left(E_{\pi}\right) \int_{E_{p}^{\prime} \geq E_{\pi}} d E_{p}^{\prime} \frac{c N\left(E_{p}^{\prime}\right)}{2 \gamma_{p}^{\prime 2} \beta_{p}^{\prime}} \int_{\epsilon} d \epsilon \frac{n}{\epsilon^{2}} \int d \epsilon_{r} \epsilon_{r} \int_{\psi} d \psi M_{i} \frac{\partial \sigma_{p \gamma}\left(\epsilon_{r}, \psi\right)}{\partial \psi} \delta\left(E_{\pi}-\xi_{i}\left(E_{p}, E_{p}^{\prime}, \epsilon\right)\right)
\end{aligned}
$$

Example of discretization : py interation

$$
\begin{gathered}
\frac{\partial N_{i}}{\partial t}\left(E_{i}\right)=S_{i}\left(E_{i}\right) . \\
S_{i}\left(E_{i}\right)=\int_{E_{p}^{\prime} \geq E_{i}} d E_{p}^{\prime} \frac{c N\left(E_{p}^{\prime}\right)}{2 \gamma_{p}^{\prime} \beta_{p}^{\prime}} \int_{\epsilon} d \epsilon \frac{n}{\epsilon^{2}} \int d \epsilon_{r} \epsilon_{r} \int_{\psi} d \psi M_{i} \frac{\partial \sigma_{p \gamma}\left(\epsilon_{r}, \psi\right)}{\partial \psi} \delta\left(E_{i}-\xi_{i}\left(\psi, E_{p}^{\prime}, \epsilon\right) E_{p}^{\prime}\right) \\
\\
\int_{K_{\pi}} L_{0, K_{\pi}}\left(E_{\pi}\right) \frac{\partial N_{\pi}}{\partial t}\left(E_{\pi}\right) d E_{\pi}=\frac{\partial N_{\pi}^{K_{\pi}}}{\partial t} \times \int_{K_{\pi}} L_{0, K_{\pi}}^{2}\left(E_{\pi}\right) d E_{\pi}=\frac{\partial N_{\pi}^{K_{\pi}}}{\partial t} \\
=\int_{K_{\pi}} d E_{\pi} L_{0, K_{\pi}}\left(E_{\pi}\right) \int_{E_{p}^{\prime} \geq E_{\pi}} d E_{p}^{\prime} \frac{c N\left(E_{p}^{\prime}\right)}{2 \gamma_{p}^{\prime 2} \beta_{p}^{\prime}} \int_{\epsilon} d \epsilon \frac{n}{\epsilon^{2}} \int d \epsilon_{r} \epsilon_{r} \int_{\psi} d \psi M_{i} \frac{\partial \sigma_{p \gamma}\left(\epsilon_{r}, \psi\right)}{\partial \psi} \delta\left(E_{\pi}-\xi_{i}\left(E_{p}, E_{p}^{\prime}, \epsilon\right)\right) \\
=\frac{c}{2} \sum_{I_{p}} \sum_{J_{\gamma}} \frac{N_{p}^{I_{p}} n_{\gamma}^{J_{\gamma}}}{\sqrt{\left\|J_{\gamma}^{\prime}\right\| \cdot\left\|I_{p}\right\| \cdot\left\|K_{\pi}\right\|}} \times \int_{K_{\pi}} \int_{I_{p}} \int_{J_{\gamma}} \frac{d E_{\pi} d E_{p}^{\prime} d \epsilon}{\gamma_{p}^{\prime 2} \beta_{p}^{\prime} \epsilon^{2}} \sigma_{s}\left(E_{p}, \epsilon, E_{\pi}\right)
\end{gathered}
$$

Example of discretization : Compton scattering

$$
\begin{aligned}
\frac{\partial n_{\mathrm{ph}}}{\partial t}\left(x_{2}\right) & =\int_{\gamma} \int_{x_{1}} d \gamma d x_{1} R\left(\gamma, x_{1} \rightarrow x_{2}\right) N_{\mathrm{e}^{ \pm}}(\gamma) n_{\mathrm{ph}}\left(x_{1}\right) \\
& -n_{\mathrm{ph}}\left(x_{2}\right) \int_{\gamma} \int_{x_{1}} d \gamma d x_{1} R\left(\gamma, x_{2} \rightarrow x_{1}\right) N_{\mathrm{e}^{ \pm}}(\gamma)
\end{aligned}
$$

Example of discretization : Compton scattering

$$
\begin{aligned}
& \frac{\partial n_{\mathrm{ph}}}{\partial t}\left(x_{2}\right)=\int_{\gamma} \int_{x_{1}} d \gamma d x_{1} R\left(\gamma, x_{1} \rightarrow x_{2}\right) N_{\mathrm{e}} \pm(\gamma) n_{\mathrm{ph}}\left(x_{1}\right) \\
& \\
& -n_{\mathrm{ph}}\left(x_{2}\right) \int_{\gamma} \int_{x_{1}} d \gamma d x_{1} R\left(\gamma, x_{2} \rightarrow x_{1}\right) N_{\mathrm{e}^{ \pm}}(\gamma) \\
& \left\{\begin{aligned}
& \frac{\partial n_{\mathrm{ph}}^{J}}{\partial t}=\frac{1}{\sqrt{\|J\|}} \sum_{k} \sum_{I<J} \frac{N_{\mathrm{e}}^{k}}{\sqrt{\|K\|}} \frac{n_{\mathrm{ph}}^{I}}{\sqrt{\|I\|}} \sigma_{I K J} \\
&-\frac{n_{\mathrm{ph}}^{J}}{\|J\|} \sum_{k} \frac{N_{\mathrm{e}}^{k}}{\sqrt{\|K\|}} \sum_{I>J} \sigma_{J K I} \\
& \sigma_{I K J} \equiv \int_{I} \int_{J} \int_{K} \sigma\left(\nu_{I}, \gamma_{K} \rightarrow \nu_{J}\right) d \nu_{I} d \nu_{J} d \gamma_{K}
\end{aligned}\right.
\end{aligned}
$$

Computational step

IC/pair

Protons

Neutrons

Photons
Neutral pions

Muons

Electrons
Neutrinos

Computational step

IC/pair

Muons

Electrons

Computational step

Electrons

Computational step

Electrons

Computational step

Electrons

Computational step

IC/pair

Physical / geometrical set up

Physical / geometrical set up

Physical / geometrical set up

Physical / geometrical set up

Stalled shock :

- Escape of particles,
- Escape of photons.

Physical / geometrical set up

Stalled shock :

- Escape of particles,
- Escape of photons.

Emission region changing with time :

- Adiabatic cooling,
- Particle escape,
- Equation of motion dictates how all important quantities are changing.

Physical / geometrical set up

Stalled shock :

- Escape of particles,
- Escape of photons.

Emission region changing with time :

- Adiabatic cooling,
- Particle escape,
- Equation of motion dictates how all important quantities are changing

Dictated by the physical problem.

Trivial changes to the code

Conclusion

- We wrote SOPRANO:
- Efficient numerical computation (~20-30s per run)

Conclusion

- We wrote SOPRANO:
- Efficient numerical computation (~20-30s per run)
- Price to pay: heavy numerical computation for the grid (little flexibility).

Conclusion

- We wrote SOPRANO:
- Efficient numerical computation (~20-30s per run)
- Price to pay: heavy numerical computation for the grid (little flexibility).
- SOPRANO is currently used for studying blazars.

