EAS predictions of QGSJET-III and model uncertainties for X_{max}

Sergey Sappchenko

Workshop on tuning of hadronic interaction models Workshop on tuning of hadronic interaction models

arXiv: 2208.05889; 2401.06202

Jet production in MC generators: collinear factorization of pQCD

$$\frac{d\sigma_{pp}^{\text{jet}}}{dp_t^2} = \sum_{I,J=q,\bar{q},g} f_I \otimes \frac{d\sigma_{IJ}^{2\to 2}}{dp_t^2} \otimes f_J$$

hard scattering involves one projectile & one target parton

▲□→ ▲ □→ ▲

Jet production in MC generators: collinear factorization of pQCD

$$\frac{d\sigma_{pp}^{\text{jet}}}{dp_t^2} = \sum_{I,J=q,\bar{q},g} f_I \otimes \frac{d\sigma_{IJ}^{2\to 2}}{dp_t^2} \otimes f_J$$

- hard scattering involves one projectile & one target parton
- problem: $d\sigma_{IJ}^{2\to 2}/dp_t^2 \propto 1/p_t^4 \Rightarrow$ explodes at small p_t

• \Rightarrow low p_t cutoff (Q_0) required (technical parameter?)

▲□→ ▲ □→ ▲

Jet production in MC generators: collinear factorization of pQCD

$$\frac{d\sigma_{pp}^{\text{jet}}}{dp_t^2} = \sum_{I,J=q,\bar{q},g} f_I \otimes \frac{d\sigma_{IJ}^{2\to 2}}{dp_t^2} \otimes f_J$$

- hard scattering involves one projectile & one target parton
- problem: $d\sigma_{IJ}^{2\rightarrow2}/dp_t^2 \propto 1/p_t^4 \Rightarrow$ explodes at small p_t

• \Rightarrow low p_t cutoff (Q_0) required (technical parameter?)

• choice of Q_0 impacts strongly the predictions (e.g. $\sigma_{pp}^{\text{tot/inel}}$)

Motivation

Jet production in MC generators: collinear factorization of pQCD

$$\frac{d\sigma_{pp}^{\text{jet}}}{dp_t^2} = \sum_{I,J=q,\bar{q},g} f_I \otimes \frac{d\sigma_{IJ}^{2 \to 2}}{dp_t^2} \otimes f_J$$

- hard scattering involves one projectile & one target parton
- problem: $d\sigma_{IJ}^{2\to 2}/dp_t^2 \propto 1/p_t^4 \Rightarrow$ explodes at small p_t

• \Rightarrow low p_t cutoff (Q_0) required (technical parameter?)

• choice of Q_0 impacts strongly the predictions (e.g. $\sigma_{pp}^{\text{tot/inel}}$)

What kind of physics is behind this cutoff?

- for $Q_0 \sim$ few GeV, soft physics irrelevant
 - \Rightarrow a perturbative mechanism missing

Motivation

Jet production in MC generators: collinear factorization of pQCD

$$\frac{d\sigma_{pp}^{\text{jet}}}{dp_t^2} = \sum_{I,J=q,\bar{q},g} f_I \otimes \frac{d\sigma_{IJ}^{2 \to 2}}{dp_t^2} \otimes f_J$$

- hard scattering involves one projectile & one target parton
- problem: $d\sigma_{IJ}^{2\to 2}/dp_t^2 \propto 1/p_t^4 \Rightarrow$ explodes at small p_t

• \Rightarrow low p_t cutoff (Q_0) required (technical parameter?)

• choice of Q_0 impacts strongly the predictions (e.g. $\sigma_{pp}^{\text{tot/inel}}$)

What kind of physics is behind this cutoff?

- for $Q_0 \sim$ few GeV, soft physics irrelevant
 - ullet \Rightarrow a perturbative mechanism missing

• are MC predictions trustworthy, without such a mechanism?

イロン イヨン イヨン ・

Hint: collinear factorization of pQCD valid at leading twist level

- perhaps higher twist effects do the job?
 - come into play at relatively small p_t [suppressed as $1/p_t^n$]

Hint: collinear factorization of pQCD valid at leading twist level

- perhaps higher twist effects do the job?
 - come into play at relatively small p_t [suppressed as $1/p_t^n$]

Promising: coherent multiple scattering on 'soft' gluons in $\gamma^* A/pA$ [Qiu & Vitev, PRL93 (2004) 262301; PLB632 (2006) 507]

 scattering involves any number of 'soft' gluon pairs (⇒ multiparton correlators)

NB: only moderate HT corrections allowed by HERA data

• HT corrections important at low Q^2

• \Rightarrow too strong corrections at tension with Q^2 -evolution of F_2

NB: only moderate HT corrections allowed by HERA data

NB: this is NOT parton saturation!

rather resembles LPM effect in QED

Usually a picture of a crowded bus in mind

• the 'unitarity' argument: not too many partons in a small volume

Usually a picture of a crowded bus in mind

- the 'unitarity' argument: not too many partons in a small volume
- incorrect: those are virtual
 (⇒ unobservable) partons

Usually a picture of a crowded bus in mind

- the 'unitarity' argument: not too many partons in a small volume
- incorrect: those are virtual (⇒ unobservable) partons

Observable are consequences of (hard) interactions of partons

 correct argument: not too many boxing pairs at the same ring

Usually a picture of a crowded bus in mind

- the 'unitarity' argument: not too many partons in a small volume
- incorrect: those are virtual (⇒ unobservable) partons

Observable are consequences of (hard) interactions of partons

 but: one may have arbitrary many virtual boxers at the ring, if they don't fight (no problem with unitarity)

Usually a picture of a crowded bus in mind

- the 'unitarity' argument: not too many partons in a small volume
- incorrect: those are virtual (⇒ unobservable) partons

Observable are consequences of (hard) interactions of partons

- but: one may have arbitrary many virtual boxers at the ring, if they don't fight (no problem with unitarity)
- above-discussed: mechanism preventing partons from 'fighting each other'

▲□▶ ▲圖▶ ▲필▶ ▲필▶ - 亘 - 釣�?

Technical improvement: π -exchange [SO, Phys.At.Nucl. 44 (2021) 1017]

 π -exchange process in π^+A : only ρ^+ and ρ^0 produced forward

•
$$\Rightarrow \langle E_{\pi^{\pm}} \rangle : \langle E_{\pi^{0}} \rangle = 3 : 1$$

 ⇒ less energy channeled into e/m cascades

Technical improvement: π -exchange [SO, Phys.At.Nucl. 44 (2021) 1017]

Energy-dependence: driven by absorptive corrections to the process

 high x production of ρ in π[±]p (π[±]A) or of neutrons in pp: only without additional inelastic rescatterings

< /₽ > < ∃ >

Technical improvement: π -exchange [SO, Phys.At.Nucl. 44 (2021) 1017]

 $\pi\text{-exchange process in } \pi^+A: \text{ only } \rho^+ \text{ and } \rho^0 \text{ produced forward}$ $\bullet \Rightarrow \langle E_{\pi^\pm} \rangle : \langle E_{\pi^0} \rangle = 3:1 \qquad \pi^+ \frac{\underline{u} \quad \underline{u}}{\overline{d}} \frac{u}{|d|} \frac{u}{d} \rho^+ \qquad \pi^+ \frac{\underline{u} \quad \underline{u}}{\overline{d}} \frac{u}{|u|} \frac{u}{u} \rho^0$ $\bullet \Rightarrow \text{ less energy channeled} \text{ into e/m cascades} \qquad \pi^0 \qquad \pi^+$

Energy-dependence: driven by absorptive corrections to the process

- high x production of ρ in π[±]p (π[±]A) or of neutrons in pp: only without additional inelastic rescatterings
- now can be tested in $pp \rightarrow nX$ (thanks to LHCf data)

<ロ> (四) (四) (三) (三)

Technical improvement: π-exchange [SO, Phys.At.Nucl. 44 (2021) 1017]

 $) \land (\curvearrowright)$

Results for extensive air showers

Results for extensive air showers

• up to $\sim 5 \text{ g/cm}^2$ shift of X_{max} wrt QGSJET-II-04

• up to $\sim 5\%$ change of N_{μ}

What is the reason for the stability of the predictions?

• the model sufficiently constrained by LHC data?

or a mere consequence of a particular model approach?

Results for extensive air showers

Regarding N_{μ} : studies in progress (talk of G. Sigl)

What about the tension with PAO data on X_{max} and $\sigma(X_{\text{max}})$?

σ(X_{max}): very robust theoretically [SO, Adv.Space Res. 64 (2019) 2445]
how feasible to obtain a much deeper X_{max}?

3 main 'switches' for changing X_{max} predictions

- inelastic proton-air cross section (σ_{p-air}^{inel})
- inelastic diffraction rate $(\sigma_{p-air}^{diffr}/\sigma_{p-air}^{inel})$
- inelasticity of non-diffractive interactions $(K_{p-\text{air}}^{\text{inel}(\text{ND})})$

3 main 'switches' for changing X_{max} predictions

- inelastic proton-air cross section (σ_{p-air}^{inel})
- inelastic diffraction rate $(\sigma_{p-air}^{diffr}/\sigma_{p-air}^{inel})$
- inelasticity of non-diffractive interactions $(K_{p-air}^{inel(ND)})$

Inelastic cross section: well constrained by LHC data

- < 3% difference for σ_{pp}^{inel} between ATLAS & TOTEM (79.5 ± 1.80 & 77.41 ± 2.92 mb)
- even smaller difference for *pA*: $\sigma_{pp}^{\text{inel}} \propto R_p^2$, $\sigma_{pA}^{\text{inel}} \propto (R_p + R_A)^2$

3 main 'switches' for changing X_{max} predictions

- inelastic proton-air cross section (σ_{p-air}^{inel})
- inelastic diffraction rate $(\sigma_{p-air}^{diffr}/\sigma_{p-air}^{inel})$
- inelasticity of non-diffractive interactions $(K_{p-air}^{inel(ND)})$

 $R_{pp} = 2 R_p$

 $R_{pA} = R_{p} + R_{A}$

Inelastic cross section: well constrained by LHC data

- < 3% difference for σ_{pp}^{inel} between ATLAS & TOTEM (79.5 ± 1.80 & 77.41 ± 2.92 mb)
- even smaller difference for pA: $\sigma_{pp}^{\text{inel}} \propto R_p^2$, $\sigma_{pA}^{\text{inel}} \propto (R_p + R_A)^2$
- NB: 1% change of $\sigma_{p-\text{air}}^{\text{inel}} \Rightarrow \Delta X_{\text{max}} \simeq 1 \text{ g/cm}^2 \text{ at } 10^{19} \text{ eV}$

Inelastic cross section: well constrained by LHC data

- < 3% difference for $\sigma_{pp}^{\text{inel}}$ between ATLAS & TOTEM (79.5 ± 1.80 & 77.41 ± 2.92 mb
- even smaller difference for pA: $\sigma_{pp}^{\text{inel}} \propto R_p^2$, $\sigma_{pA}^{\text{inel}} \propto (R_p + R_A)^2$
- NB: 1% change of $\sigma_{p-\text{air}}^{\text{inel}} \Rightarrow \Delta X_{\text{max}} \simeq 1 \text{ g/cm}^2 \text{ at } 10^{19} \text{ eV}$

)
$$\boxed{R_{pp}} = 2 R_{p}$$

$$\boxed{R_{pA}} = R_{p} + R_{A}$$

Diffraction uncertainties: $\Delta X_{\text{max}} \lesssim 5 \text{ g/cm}^2$ [SO, PRD89 (2014) 074009]

 now more precise: σ^{SD}_{pp} measured by TOTEM & ATLAS (using Roman Pots techniques)

The only freedom left: inelasticity for p - air

- higher energy \Rightarrow higher multiple scattering \Rightarrow higher $K_{n-\mathrm{air}}^{\mathrm{inel}}$
- \Rightarrow one needs softer spectra for secondary hadrons $(\pi, K...)$

• ideally: Feynman scaling for forward spectra

The only freedom left: inelasticity for p - air

- higher energy \Rightarrow higher multiple scattering \Rightarrow higher $K_{p-\text{air}}^{\text{inel}}$
- ullet \Rightarrow one needs softer spectra for secondary hadrons $(\pi,K...)$
 - ideally: Feynman scaling for forward spectra

How to give less energy away to secondary hadrons?

 hadronization (string fragmentation) procedure is a 'holy cow' (universal)

• central rapidity density of secondaries: constrained by data

• main 'switch': constituent parton (string end) momentum distribution $(x^{-\alpha_q})$ [SO, J.Phys. G29 (2003) 831]

The only freedom left: inelasticity for p - air

- higher energy \Rightarrow higher multiple scattering \Rightarrow higher $K_{p-\mathrm{air}}^{\mathrm{inel}}$
- ullet \Rightarrow one needs softer spectra for secondary hadrons $(\pi,K...)$
 - ideally: Feynman scaling for forward spectra

How to give less energy away to secondary hadrons?

- hadronization (string fragmentation) procedure is a 'holy cow' (universal)
- central rapidity density of secondaries: constrained by data
- main 'switch': constituent parton (string end) momentum distribution $(x^{-\alpha_q})$ [SO, J.Phys. G29 (2003) 831]

 $dN_{\rm h}/dy$

• NB: may not work for semihard scattering (minijet production)

▲口▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - めんの

▲口 > ▲団 > ▲目 > ▲目 > ▲目 > ▲ ○ ◆ ○ ◆

・ロ・・ 中・・ 川田・・ 日・ うらる

- up to 10 g/cm² shift of X_{max}
- why a moderate effect on particle production & X_{max}?
- 'warranted' scaling violation due to semihard scattering?

- high energies ⇒ quick rise of (mini)jet production
 - small $\alpha_s(p_t^2)$ compensated by infrared and collinear logs (arising from parton cascading): $\ln(x_i/x_{i+1})$, $\ln(p_{t_{i+1}}^2/p_{t_i}^2)$

- high energies \Rightarrow quick rise of (mini)jet production
 - small $\alpha_s(p_t^2)$ compensated by infrared and collinear logs (arising from parton cascading): $\ln(x_i/x_{i+1})$, $\ln(p_{t_{i+1}}^2/p_{t_i}^2)$

- hadron jets: typically produced in central region (y ∼ 0) in c.m.s.
 - small impact on forward spectra

- high energies \Rightarrow quick rise of (mini)jet production
 - small $\alpha_s(p_t^2)$ compensated by infrared and collinear logs (arising from parton cascading): $\ln(x_i/x_{i+1})$, $\ln(p_{t_{i+1}}^2/p_{t_i}^2)$

- hadron jets: typically produced in central region (y ∼ 0) in c.m.s.
 - small impact on forward spectra
- but: hardest scattering preceeded by parton cascade (smaller pt & higher x)
 - ⇒ most important are first ('softest') partons in the cascade

- high energies \Rightarrow quick rise of (mini)jet production
 - small $\alpha_s(p_t^2)$ compensated by infrared and collinear logs (arising from parton cascading): $\ln(x_i/x_{i+1})$, $\ln(p_{t_{i+1}}^2/p_{t_i}^2)$

- hadron jets: typically produced in central region (y ~ 0) in c.m.s.
 - small impact on forward spectra
- but: hardest scattering preceeded by parton cascade (smaller pt & higher x)
 - ⇒ most important are first ('softest') partons in the cascade
- the cascade starts at Q_0^2 -scale with 'soft' gluons? [$f_g(x, Q_0^2) \propto x^{-1-\Delta_g}$]

- high energies \Rightarrow quick rise of (mini)jet production
 - small $\alpha_s(p_t^2)$ compensated by infrared and collinear logs (arising from parton cascading): $\ln(x_i/x_{i+1})$, $\ln(p_{t_{i+1}}^2/p_{t_i}^2)$

- hadron jets: typically produced in central region (y ~ 0) in c.m.s.
 - small impact on forward spectra
- but: hardest scattering preceeded by parton cascade (smaller pt & higher x)
 - ⇒ most important are first ('softest') partons in the cascade
- the cascade starts at Q_0^2 -scale with 'soft' gluons? [$f_g(x,Q_0^2) \propto x^{-1-\Delta_g}$]
- no: x-distribution of those gluons is weighted with the hard scattering!

- high energies \Rightarrow quick rise of (mini)jet production
 - small $\alpha_s(p_t^2)$ compensated by infrared and collinear logs (arising from parton cascading): $\ln(x_i/x_{i+1})$, $\ln(p_{t_{i+1}}^2/p_{t_i}^2)$

Virtual gluons emitted by protons are indeed soft: $\propto x^{-1-\Delta_g}$

• but the probability for hard scattering: convolution with σ^{hard}_{gg}

$$w_{\text{hard}}(s) \propto \int dx^+ dx^- f_g(x^+, Q_0^2) f_g(x^-, Q_0^2) \,\mathbf{\sigma}_{gg}^{\text{hard}}(x^+ x^- s, Q_0^2)$$

• $\sigma^{\rm hard}_{gg}(\hat{s},Q^2_0) \propto \hat{s}^{\Delta_{\rm hard}}$ – contribution of the DGLAP 'ladder'

- high energies \Rightarrow quick rise of (mini)jet production
 - small $\alpha_s(p_t^2)$ compensated by infrared and collinear logs (arising from parton cascading): $\ln(x_i/x_{i+1})$, $\ln(p_{t_{i+1}}^2/p_{t_i}^2)$

Virtual gluons emitted by protons are indeed soft: $\propto x^{-1-\Delta_g}$

 \bullet but the probability for hard scattering: convolution with σ^{hard}_{gg}

$$w_{\text{hard}}(s) \propto \int dx^+ dx^- f_g(x^+, Q_0^2) f_g(x^-, Q_0^2) \,\mathbf{\sigma}_{gg}^{\text{hard}}(x^+ x^- s, Q_0^2)$$

- $\sigma^{\rm hard}_{gg}(\hat{s},Q^2_0) \propto \hat{s}^{\Delta_{
 m hard}}$ contribution of the DGLAP 'ladder'
- \Rightarrow gluons which succeed to interact have large x: $\propto x^{\Delta_{hard} \Delta_g 1}$ (iff $\Delta_{hard} \simeq 0.3 > \Delta_g$)
 - i.e., first partons in a perturbative cascade are 'valence-like' (independently on our assumptions for string end distribution)

- Major development in QGSJET-III: phenomenological treatment of HT corrections to hard scattering processes
 - tames the low p_t rise of (mini)jet rates
 - ${\, \bullet \, }$ reduces the model dependence on the low p_t cutoff Q_0
 - dynamical treatment: stronger effects at small *b*, higher energy, for heavier nuclei

2 Technical improvement: treatment of π -exchange process

- energy-dependence: due to absorptive corrections (probability not to have additional inelastic rescattering)
- the mechanism cross checked with LHCf data on $pp \rightarrow nX$
- Rather small changes for EAS characteristics (wrt QGSJET-II)
 up to ~ 5 g/cm² shift of X_{max} and up to ~ 5% change of N_µ
- **③** Typical model uncertainties for X_{max} : at $\sim 10 \text{ g/cm}^2$ level

- Major development in QGSJET-III: phenomenological treatment of HT corrections to hard scattering processes
 - tames the low p_t rise of (mini)jet rates
 - ${\, \bullet \, }$ reduces the model dependence on the low p_t cutoff Q_0
 - dynamical treatment: stronger effects at small *b*, higher energy, for heavier nuclei

2 Technical improvement: treatment of π -exchange process

- energy-dependence: due to absorptive corrections (probability not to have additional inelastic rescattering)
- the mechanism cross checked with LHCf data on $pp \rightarrow nX$
- Rather small changes for EAS characteristics (wrt QGSJET-II)
 up to ~5 g/cm² shift of X_{max} and up to ~5% change of N_µ
- **③** Typical model uncertainties for X_{max} : at $\sim 10 \text{ g/cm}^2$ level

- Major development in QGSJET-III: phenomenological treatment of HT corrections to hard scattering processes
 - tames the low p_t rise of (mini)jet rates
 - ullet reduces the model dependence on the low p_t cutoff Q_0
 - dynamical treatment: stronger effects at small *b*, higher energy, for heavier nuclei

2 Technical improvement: treatment of π -exchange process

- energy-dependence: due to absorptive corrections (probability not to have additional inelastic rescattering)
- the mechanism cross checked with LHCf data on $pp \rightarrow nX$
- Sather small changes for EAS characteristics (wrt QGSJET-II)
 - up to $\sim 5~{
 m g/cm^2}$ shift of $X_{
 m max}$ and up to $\sim 5\%$ change of N_μ
- **③** Typical model uncertainties for X_{max} : at $\sim 10 \text{ g/cm}^2$ level

- Major development in QGSJET-III: phenomenological treatment of HT corrections to hard scattering processes
 - tames the low p_t rise of (mini)jet rates
 - ullet reduces the model dependence on the low p_t cutoff Q_0
 - dynamical treatment: stronger effects at small *b*, higher energy, for heavier nuclei

2 Technical improvement: treatment of π -exchange process

- energy-dependence: due to absorptive corrections (probability not to have additional inelastic rescattering)
- the mechanism cross checked with LHCf data on $pp \rightarrow nX$
- Rather small changes for EAS characteristics (wrt QGSJET-II)
 up to ~ 5 g/cm² shift of X_{max} and up to ~ 5% change of N_µ

③ Typical model uncertainties for $X_{
m max}$: at $\sim 10~
m g/cm^2$ level