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What kind of physics is behind this cutoff?

@ for Qo ~ few GeV, soft physics irrelevant

@ = a perturbative mechanism missing




Jet production in MC generators: collinear factorization of pQCD
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@ hard scattering involves one projectile & one target parton

o problem: doZ2/dp¢ 0 1/pf = explodes at small p

@ = low p; cutoff (Qo) required (technical parameter?)

o choice of Qo impacts strongly the predictions (e.g. oy ™)

What kind of physics is behind this cutoff?

@ for Qo ~ few GeV, soft physics irrelevant

@ = a perturbative mechanism missing

@ are MC predictions trustworthy, without such a mechanism?
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@ perhaps higher twist effects do the job?
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@ scattering involves any number of 'soft’ gluon pairs
(= multiparton correlators)




Dynamical higher twist effects in hadronic scattering

Hint: collinear factorization of pQCD valid at leading twist level
@ perhaps higher twist effects do the job?

s come into play at relatively small p; [suppressed as 1/pf]

Promising: coherent multiple scattering on 'soft’ gluons in y*A/pA
[Qiu & Vitev, PRL93 (2004) 262301; PLB632 (2006) 507]

@ scattering involves any number of 'soft’ gluon pairs
(= multiparton correlators)

Extrapolation to hadron-proton & light nuclei
[SO & Bleicher, Universe 5 (2019) 106; SO, arXiv: 2401.06202]




NB: only moderate HT corrections allowed by HERA data
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@ HT corrections important at low Q?
@ = too strong corrections at tension with Q%evolution of F»
@ known fact: Q?-evolution of F» is well-described by DGLAP
s = little space for HT or/and saturation effects
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Dynamical higher twist effects in hadronic scattering
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Dynamical higher twist effects in hadronic scattering

Small effect on app
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@ = the mechanism does its principal job

NB: this is NOT parton saturation!

@ rather resembles LPM effect in QED
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Usually a picture of a crowded bus in mind

@ the 'unitarity’ argument: not too
many partons in a small volume
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Usually a picture of a crowded bus in mind

o the 'unitarity’ argument: not too
many partons in a small volume

@ incorrect: those are virtual
(= unobservable) partons

Observable are consequences of (hard) interactions of partons
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@ the 'unitarity’ argument: not too
many partons in a small volume

@ incorrect: those are virtual
(= unobservable) partons

@ but: one may have arbitrary many
virtual boxers at the ring, if they don’t
fight (no problem with unitarity)



Few comments on the parton saturation mechanism

Usually a picture of a crowded bus in mind

@ the 'unitarity’ argument: not too
many partons in a small volume

@ incorrect: those are virtual
(= unobservable) partons

@ but: one may have arbitrary many
virtual boxers at the ring, if they don't
fight (no problem with unitarity)

@ above-discussed: mechanism preventing
partons from 'fighting each other’



Technical improvement: Teexchange [so, Phys At Nucl. 44 (2021) 1017]

TE over p-exchange dominance = ~ 20% increase of Ny
[SO, EPJ Web Conf. 52 (2013) 02001]
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Technical improvement: Teexchange [so, Phys At Nuci. 44 (2021)

Te over p-exchange dominance = ~ 20% increase of N,
[SO, EPJ Web Conf. 52 (2013) 02001]

p-induced EAS

N, (>10 GeV)

® why so?!

. . N, (>100 GeV)
@ isospin symmetry: pt:p :p®=1:1:1

11 —

Nu (QGSJET-II-04/QGSJET-I1-03)

o = (Emp):(Ep)=2:1in central i
production (p* — TETO, PO — TrHIT) 1 Lt st s

1017]

Ttexchange process in TTTA: only pJr and p0 produced forward
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@ high X production of p in TEp (TEEA) —
or of neutrons in pp: only without ™.
additional inelastic rescatterings




Technical improvement: Teexchange [so, Phys At Nucl. 44 (2021) 1017]

Ttexchange process in TTTA: only pJr and p0 produced forward

+ _U 0
o = (Bt {En) = T “T- =
@ = less energy channeled d ’: d a ’F
T[+

into e/m cascades

Energy-dependence: driven by absorptive corrections to the process

@ high X production of p in Tt5p (TtFA) T
or of neutrons in pp: only without ™ iTT+
additional inelastic rescatterings !

(thanks to LHCf data) p

1
@ now can be tested in pp— nX :P
i




Technical improvement: Teexchange [so, Phys At Nucl. 44 (2021) 1017]

Starting with NA49 data at 158 GeV/c
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Technical improvement: Teexchange [so, Phys At Nucl. 44 (2021) 1017]

And moving over 6 energy decades to 13 TeV c.m.
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Technical improvement: Teexchange [so, Phys At Nucl. 44 (2021) 1017]

But: larger forward n-yield seen by LHCf at 7 TeV than at 13 TeV
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Results for extensive air showers

Rather small changes for Xmax and Ny (wrt QGSJET-11-04)
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@ up to ~ 5 g/cm? shift of Xmax wrt QGSJET-11-04
@ up to ~ 5% change of Ny




Results for extensive air showers

Rather small changes for Xmax and N, (wrt QGSJET-11-04)
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@ up to ~ 5 g/cm? shift of Xmax wrt QGSJET-11-04
@ up to ~ 5% change of Ny

- -

What is the reason for the stability of the predictions?

@ the model sufficiently constrained by LHC data?

@ or a mere consequence of a particular model approach?



Results for extensive air showers

Rather small changes for Xmax and Ny (wrt QGSJET-11-04)
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@ up to ~ 5 g/cm? shift of Xmax wrt QGSJET-11-04
@ up to ~ 5% change of Ny

Regarding Ny: studies in progress (talk of G. Sigl)




Model uncertainties for Xmax calculations

What about the tension with PAO data on Xnax and 0(Xmax)?
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@ 0(Xmax): very robust theoretically [SO, Adv.Space Res. 64 (2019) 2445]

@ how feasible to obtain a much deeper Xmax?




Model uncertainties for Xmax calculations

3 main 'switches' for changing Xmax predictions

@ inelastic proton-air cross section (cr'“e!,,‘Ir

diffr inel
o inelastic diffraction rate (0™ /07 %;)

@ inelasticity of non-diffractive interactions (Ké)nfgi’r\m))




Model uncertainties for Xmax calculations

3 main 'switches' for changing Xmax predictions

inel
p—air

o inelastic diffraction rate (Og'ﬁglr/cg‘fgir)

@ inelastic proton-air cross section (O

ineI(ND))

@ inelasticity of non-diffractive interactions (KFHMr

Inelastic cross section: well constrained by LHC data

o < 3% difference for Og}‘f'
between ATLAS & TOTEM
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@ even smaller difference for pA
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Model uncertainties for Xmax calculations

3 main 'switches' for changing Xmax predictions

: i ; i inel
@ inelastic proton-air cross section (Op B

o inelastic diffraction rate (Od'ﬁrlr/cg‘eglr)
KineI(ND))

@ inelasticity of non-diffractive interactions ( p—air

Inelastic cross section: well constrained by LHC data

o < 3% difference for O'g}?l
between ATLAS & TOTEM -
(79.5:|: 1.80 & 77.41+292 mb) ® R =2 F%

@ '
@ even smaller difference for pA
ops URS o' O (Rp+Ra)? g

o NB: 1% change of O'F?fgir = Roa= Ro + R
AXmax~ 1 g/cm? at 10° eV




Model uncertainties for Xmax calculations

Inelastic cross section: well constrained by LHC data

o < 3% difference for Oi,?g'
between ATLAS & TOTEM

® _  [r -
(79.5+1.80 & 77.41+2.92 mb) . 5”3_ 2R,
@ even smaller difference for pA
|neI 0 Rp 0-Inel Rp+ RA) . _

° NB. 1% change of O'F?flair = Roa= R+ R
AXmax~ 1 g/cm? at 10'° eV

Diffraction uncertainties: AXmax S 5 g/cm2 [SO, PRD89 (2014) 074009]

@ now more precise: ngD measured by TOTEM & ATLAS
(using Roman Pots techniques)




Model uncertainties for Xmax calculations

The only freedom left: inelasticity for p— air

inel
p—air

@ = one needs softer spectra for secondary hadrons (T, K...)

@ higher energy = higher multiple scattering = higher K

o ideally: Feynman scaling for forward spectra




Model uncertainties for Xmax calculations
The only freedom left: inelasticity for p— air

@ higher energy = higher multiple scattering = higher Kgf;ir

@ = one needs softer spectra for secondary hadrons (TLK...)

o ideally: Feynman scaling for forward spectra

. o
How to give less energy away to secondary hadrons?

@ hadronization (string fragmentation)

. , ) . dN, /d
procedure is a 'holy cow’ (universal) N, dy
@ central rapidity density of secondaries: DN
constrained by data o

4 A

@ main 'switch': constituent parton 74
(string end) momentum distribution ~ /* *\

(x~%a) [S0O, J.Phys. G29 (2003) 831] y




Model uncertainties for Xmax calculations
The only freedom left: inelasticity for p— air

@ higher energy = higher multiple scattering = higher Kgf;ir
@ = one needs softer spectra for secondary hadrons (TLK...)

o ideally: Feynman scaling for forward spectra

. o
How to give less energy away to secondary hadrons?

@ hadronization (string fragmentation)

. , ) . dN, /d
procedure is a 'holy cow’ (universal) N, dy
@ central rapidity density of secondaries: DN
constrained by data o
4 A
@ main 'switch’: constituent parton 74 S
(string end) momentum distribution ~ /* \
(x~%a) [S0O, J.Phys. G29 (2003) 831] y

@ NB: may not work for semihard scattering (minijet production)




Model uncertainties for Xmax calculations

Vary the string end distributions, x~%a: with aq = 0.65,0.8,0.9
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Model uncertainties for Xmax calculations

Check with more forward data from CMS & TOTEM

8 - p+p- h" (8TeVem.)

dn,,/dn
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Model uncertainties for Xmax calculations

Same conclusions, when comparing to LHCf data
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Model uncertainties for Xmax calculations

Same conclusions, when comparing to LHCf data
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@ NB: higher discrimination
power expected from
combined studies with
central /forward detectors
[SO, Bleicher, Pierog & Werner,
PRD94 (2016) 114026]




Model uncertainties for Xmax calculations

Choice of string end distribution (X~ %): impact on Xmax

NEQ 850 | Pp-induced EAS
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Model uncertainties for Xmax calculations

Choice of string end distribution (X~ %): impact on Xmax

xg 850 | Pp-induced EAS
k=) L
5 [ —— QGSJET-IIl (069
x r X -08
800 [~ """ 7a 5
X 00 @ up to 10 g/cm® shift of Xmax
750 | @ why a moderate effect on
particle production & Xmnax?
e x x @ 'warranted’ scaling violation
10 10 10" 102 due to semihard scattering?
E, (eV)




Hard scattering: importance of the parton cascade

@ high energies = quick rise of (mini)jet production

o small ag(p?) - compensated by infrared and collinear logs
(arising from parton cascading): In(X/Xi;+1), In(ptziﬂ/ptzi)
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o small as(p?) - compensated by infrared and collinear logs
(arising from parton cascading): In(X/Xi+1), In(ptziﬂ/ptzi)

Why (mini)jet production is important for EAS predictions?

@ hadron jets: typically produced in
central region (y ~ 0) in c.m.s.

@ small impact on forward spectra

lower R higher x

’hlgher R lower
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Hard scattering: importance of the parton cascade

@ high energies = quick rise of (mini)jet production

o small as(p?) - compensated by infrared and collinear logs
(arising from parton cascading): In(X/Xi+1), In(ptziﬂ/ptzi)

Why (mini)jet production is important for EAS predictions?

@ hadron jets: typically produced in
central region (y ~ 0) in c.m.s.

@ small impact on forward spectra

lower R higher x

@ but: hardest scattering preceeded by
parton cascade (smaller p; & higher X)

’hlgher R lower

@ = most important are first
('softest’) partons in the cascade

EW“”“E

@ the cascade starts at ch)—scale with
'soft’ gluons? [ fg(X, Q%) Ox 1% ]




Hard scattering: importance of the parton cascade

@ high energies = quick rise of (mini)jet production

o small as(p?) - compensated by infrared and collinear logs
(arising from parton cascading): In(X/Xi+1), In(ptziﬂ/ptzi)

Why (mini)jet production is important for EAS predictions?

@ hadron jets: typically produced in
central region (y ~ 0) in c.m.s.

@ small impact on forward spectra

lower R higher x

@ but: hardest scattering preceeded by
parton cascade (smaller p; & higher X)

’hlgher R lower

@ = most important are first
('softest’) partons in the cascade

EW“”“E

@ the cascade starts at Q(z)—scale with
'soft’ gluons? [ fq(x,Q3) O x 12 |

@ no: X-distribution of those gluons is
weighted with the hard scattering!




Hard scattering: importance of the parton cascade

@ high energies = quick rise of (mini)jet production

o small ag(p?) - compensated by infrared and collinear logs
(arising from parton cascading): In(Xi/Xi+1), In(ptziﬂ/ptzi)

1-0g

Virtual gluons emitted by protons are indeed soft: [1Xx™

hard

@ but the probability for hard scattering: convolution with Ogg

Whard(S) 0 / dx*dx” fg(x", Qf) fy(x ™, QF) GSSrd(X+X‘s Q%)

° oggrd(é, Qg) [0 &nard — contribution of the DGLAP 'ladder’




Hard scattering: importance of the parton cascade

@ high energies = quick rise of (mini)jet production

o small ag(p?) - compensated by infrared and collinear logs
(arising from parton cascading): In(Xi/Xi+1), In(ptziﬂ/ptzi)

1-0g

Virtual gluons emitted by protons are indeed soft: [1Xx™

hard

@ but the probability for hard scattering: convolution with ggg

Whard(S) 0 / dx*dx fg(x",Qf) fy(x ™, QF) GSSrd(X+X‘s Q%)

° oggrd(é, Qg) [0 &nard — contribution of the DGLAP 'ladder’

@ = gluons which succeed to interact have large x: [ x®hara—8g—1

o i.e., first partons in a perturbative cascade are 'valence-like'
(independently on our assumptions for string end distribution)




© Major development in QGSJET-IIl: phenomenological
treatment of HT corrections to hard scattering processes

@ tames the low px rise of (mini)jet rates
@ reduces the model dependence on the low p; cutoff Qg

s dynamical treatment: stronger effects at small b, higher
energy, for heavier nuclei

© Technical improvement: treatment of Teexchange process

o energy-dependence: due to absorptive corrections
(probability not to have additional inelastic rescattering)

@ the mechanism cross checked with LHCf data on pp— nX

© Rather small changes for EAS characteristics (wrt QGSJET-II)
o up to ~5 g/cm? shift of Xmax and up to ~ 5% change of Ny

@ Typical model uncertainties for Xmax at ~ 10 g/cm? level
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© Rather small changes for EAS characteristics (wrt QGSJET-II)
o up to ~5 g/cm? shift of Xmax and up to ~ 5% change of Ny

@ Typical model uncertainties for Xmax at ~ 10 g/cm? level
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