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t ∝ 1/p4
t ⇒ explodes at small pt

⇒ low pt cutoff (Q0) required (technical parameter?)

choice of Q0 impacts strongly the predictions (e.g. σtot/inel
pp )

What kind of physics is behind this cutoff?

for Q0 ∼ few GeV, soft physics irrelevant

⇒ a perturbative mechanism missing

are MC predictions trustworthy, without such a mechanism?
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Hint: collinear factorization of pQCD valid at leading twist level

perhaps higher twist effects do the job?

come into play at relatively small pt [suppressed as 1/pn
t ]

Promising: coherent multiple scattering on ’soft’ gluons in γ∗A/pA
[Qiu & Vitev, PRL93 (2004) 262301; PLB632 (2006) 507]
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Hint: collinear factorization of pQCD valid at leading twist level

perhaps higher twist effects do the job?

come into play at relatively small pt [suppressed as 1/pn
t ]
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scattering involves any number of ’soft’ gluon pairs
(⇒ multiparton correlators)

Extrapolation to hadron-proton & light nuclei
[SO & Bleicher, Universe 5 (2019) 106; SO, arXiv: 2401.06202]



Dynamical higher twist effects in hadronic scattering

NB: only moderate HT corrections allowed by HERA data
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HT corrections important at low Q2

⇒ too strong corrections at tension with Q2-evolution of F2

known fact: Q2-evolution of F2 is well-described by DGLAP

⇒ little space for HT or/and saturation effects



Dynamical higher twist effects in hadronic scattering

Small effect on σtot/el
pp but taming the low-pt rise of (mini)jet rates
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⇒ the mechanism does its principal job

NB: this is NOT parton saturation!

rather resembles LPM effect in QED
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Few comments on the parton saturation mechanism

Usually a picture of a crowded bus in mind

the ’unitarity’ argument: not too
many partons in a small volume

incorrect: those are virtual
(⇒ unobservable) partons

Observable are consequences of (hard) interactions of partons

but: one may have arbitrary many
virtual boxers at the ring, if they don’t
fight (no problem with unitarity)

above-discussed: mechanism preventing
partons from ’fighting each other’



Technical improvement: π-exchange [SO, Phys.At.Nucl. 44 (2021) 1017]

π- over ρ-exchange dominance ⇒ ∼ 20% increase of Nµ

[SO, EPJ Web Conf. 52 (2013) 02001]

why so?!
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π-exchange process in π+A: only ρ+ and ρ0 produced forward

⇒ 〈Eπ±〉 : 〈Eπ0〉 = 3 : 1

⇒ less energy channeled
into e/m cascades
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high x production of ρ in π±p (π±A)
or of neutrons in pp: only without
additional inelastic rescatterings
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π-exchange process in π+A: only ρ+ and ρ0 produced forward

⇒ 〈Eπ±〉 : 〈Eπ0〉 = 3 : 1
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Energy-dependence: driven by absorptive corrections to the process

high x production of ρ in π±p (π±A)
or of neutrons in pp: only without
additional inelastic rescatterings

now can be tested in pp→ nX
(thanks to LHCf data)

n

p

p

P

π+



Technical improvement: π-exchange [SO, Phys.At.Nucl. 44 (2021) 1017]

Starting with NA49 data at 158 GeV/c
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Technical improvement: π-exchange [SO, Phys.At.Nucl. 44 (2021) 1017]

And moving over 6 energy decades to 13 TeV c.m.
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Technical improvement: π-exchange [SO, Phys.At.Nucl. 44 (2021) 1017]

But: larger forward n-yield seen by LHCf at 7 TeV than at 13 TeV
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Results for extensive air showers

Rather small changes for Xmax and Nµ (wrt QGSJET-II-04)
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up to ∼ 5 g/cm2 shift of Xmax wrt QGSJET-II-04

up to ∼ 5% change of Nµ

What is the reason for the stability of the predictions?

the model sufficiently constrained by LHC data?

or a mere consequence of a particular model approach?
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up to ∼ 5 g/cm2 shift of Xmax wrt QGSJET-II-04

up to ∼ 5% change of Nµ

Regarding Nµ: studies in progress (talk of G. Sigl)



Model uncertainties for Xmax calculations

What about the tension with PAO data on Xmax and σ(Xmax)?

σ(Xmax): very robust theoretically [SO, Adv.Space Res. 64 (2019) 2445]

how feasible to obtain a much deeper Xmax?
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inelasticity of non-diffractive interactions (K inel(ND)
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Model uncertainties for Xmax calculations

Inelastic cross section: well constrained by LHC data

< 3% difference for σinel
pp

between ATLAS & TOTEM
(79.5±1.80 & 77.41±2.92 mb)

even smaller difference for pA:
σinel

pp ∝ R2
p, σinel

pA ∝ (Rp +RA)2

NB: 1% change of σinel
p−air ⇒

∆Xmax≃ 1 g/cm2 at 1019 eV

R   = 2 Rpp p

pA p AR   =  R  + R  

Diffraction uncertainties: ∆Xmax. 5 g/cm2 [SO, PRD89 (2014) 074009]

now more precise: σSD
pp measured by TOTEM & ATLAS

(using Roman Pots techniques)
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ideally: Feynman scaling for forward spectra
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The only freedom left: inelasticity for p−air

higher energy ⇒ higher multiple scattering ⇒ higher K inel
p−air

⇒ one needs softer spectra for secondary hadrons (π,K...)

ideally: Feynman scaling for forward spectra

How to give less energy away to secondary hadrons?

hadronization (string fragmentation)
procedure is a ’holy cow’ (universal)

central rapidity density of secondaries:
constrained by data

main ’switch’: constituent parton
(string end) momentum distribution
(x−αq) [SO, J.Phys. G29 (2003) 831]
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Model uncertainties for Xmax calculations

The only freedom left: inelasticity for p−air

higher energy ⇒ higher multiple scattering ⇒ higher K inel
p−air

⇒ one needs softer spectra for secondary hadrons (π,K...)

ideally: Feynman scaling for forward spectra

How to give less energy away to secondary hadrons?

hadronization (string fragmentation)
procedure is a ’holy cow’ (universal)

central rapidity density of secondaries:
constrained by data

main ’switch’: constituent parton
(string end) momentum distribution
(x−αq) [SO, J.Phys. G29 (2003) 831]
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NB: may not work for semihard scattering (minijet production)



Model uncertainties for Xmax calculations

Vary the string end distributions, x−αq: with αq = 0.65,0.8,0.9
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Model uncertainties for Xmax calculations

Check with more forward data from CMS & TOTEM
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Model uncertainties for Xmax calculations

Same conclusions, when comparing to LHCf data
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Model uncertainties for Xmax calculations

Same conclusions, when comparing to LHCf data
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NB: higher discrimination
power expected from
combined studies with
central/forward detectors
[SO, Bleicher, Pierog & Werner,

PRD94 (2016) 114026]



Model uncertainties for Xmax calculations

Choice of string end distribution (x−αq): impact on Xmax
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Model uncertainties for Xmax calculations

Choice of string end distribution (x−αq): impact on Xmax
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why a moderate effect on
particle production & Xmax?

’warranted’ scaling violation
due to semihard scattering?
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t ) - compensated by infrared and collinear logs
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Why (mini)jet production is important for EAS predictions?

hadron jets: typically produced in
central region (y∼ 0) in c.m.s.
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hadron jets: typically produced in
central region (y∼ 0) in c.m.s.

small impact on forward spectra
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⇒ most important are first
(’softest’) partons in the cascade

the cascade starts at Q2
0-scale with

’soft’ gluons? [ fg(x,Q2
0) ∝ x−1−∆g ]

no: x-distribution of those gluons is
weighted with the hard scattering!

tlower p , higher x

higher p , lower xt



Hard scattering: importance of the parton cascade

high energies ⇒ quick rise of (mini)jet production

small αs(p2
t ) - compensated by infrared and collinear logs

(arising from parton cascading): ln(xi/xi+1), ln(p2
ti+1

/p2
ti )

Virtual gluons emitted by protons are indeed soft: ∝ x−1−∆g

but the probability for hard scattering: convolution with σhard
gg

whard(s) ∝
Z

dx+dx− fg(x
+,Q2

0) fg(x
−,Q2

0) σhard
gg (x+x−s,Q2

0)

σhard
gg (ŝ,Q2
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high energies ⇒ quick rise of (mini)jet production

small αs(p2
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(arising from parton cascading): ln(xi/xi+1), ln(p2
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Virtual gluons emitted by protons are indeed soft: ∝ x−1−∆g

but the probability for hard scattering: convolution with σhard
gg

whard(s) ∝
Z

dx+dx− fg(x
+,Q2

0) fg(x
−,Q2

0) σhard
gg (x+x−s,Q2

0)

σhard
gg (ŝ,Q2

0) ∝ ŝ∆hard – contribution of the DGLAP ’ladder’

⇒ gluons which succeed to interact have large x: ∝ x∆hard−∆g−1

(iff ∆hard≃ 0.3 > ∆g)

i.e., first partons in a perturbative cascade are ’valence-like’
(independently on our assumptions for string end distribution)



Outlook

1 Major development in QGSJET-III: phenomenological
treatment of HT corrections to hard scattering processes

tames the low pt rise of (mini)jet rates

reduces the model dependence on the low pt cutoff Q0

dynamical treatment: stronger effects at small b, higher
energy, for heavier nuclei

2 Technical improvement: treatment of π-exchange process

energy-dependence: due to absorptive corrections
(probability not to have additional inelastic rescattering)

the mechanism cross checked with LHCf data on pp→ nX

3 Rather small changes for EAS characteristics (wrt QGSJET-II)

up to ∼ 5 g/cm2 shift of Xmax and up to ∼ 5% change of Nµ

4 Typical model uncertainties for Xmax: at ∼ 10 g/cm2 level
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