Measurements of Relevance for Cosmic-Ray Physics from NA61/SHINE

Michael Unger (KIT) for the NA61/SHINE Collaboration

NA35 3.2 TeV O+Pb interactions

Workshop on the tuning of hadronic interaction models, Wuppertal, January 2024

NA61/SHINE

pprox 140 physicists from 14 countries and 28 institutions

Strong interactions physics

- search for the critical point of strongly interacting matter
- study of the properties of the onset of deconfinement
- heavy quarks: direct measurement of open charm at SPS energies

Neutrino and cosmic ray physics

- hadron measurements for the J-PARC neutrino program
- · hadron measurements for the Fermilab neutrino program
- measurements for cosmic ray physics (Pierre-Auger and KASCADE experiments) for improving air shower simulations
- measurements of nuclear fragmentation cross sections of intermediate mass nuclei needed to understand the propagation of cosmic rays in our Galaxy

cosmic ray groups: KIT (Germany), Uni. Hawaii (USA), Uni. Silesia (Poland)

NA61/SHINE at the SPS H2 Beam Line

NA61/SHINE at the SPS H2 Beam Line

A precise (2% dp/p acceptance), robust, flexible magnetic spectrometer

EHN1 Building NA61 Trzo SPS L Efformispecies - CEN - EDMS No: 115532

NA61/SHINE at the SPS H2 Beam Line

NA61/SHINE

NA61/SHINE Detector

- large acceptance $\approx 50\%$ at $p_T \leq 2.5 \, {\rm GeV/c}$
- momentum resolution: $\sigma(p)/p^2 \approx 10^{-4} ({\rm GeV/c})^{-1}$
- tracking efficiency: > 95%, pid with dE/dx and ToF

and a

The Cosmic-Ray Program of the NA61/SHINE Facility

• Particle Production in Air Showers

p+C Interactions
 (31, 60, 90, 120 GeV/c)

π+C Interactions (30, 60, 158, 350 GeV/c)

- Galactic Cosmic Rays
 - d, \bar{d} and \bar{p} Production

(p+p at 20, 31, 40, 80, 158, 400 GeV/c)

• Nuclear Fragmentation (C+C, C+CH₂ at 13.5 AGeV/c)

PRC 84 (2011) 034604, PRC 85 (2012) 035210, PRC 89 (2014) 025205, EPJ C74 (2014) 2794, EPJ C76 (2016) 84, EPJ C76 (2016) 198, EPJ C77 (2017) 671 EPJ C77 (2017) 626, PRD 98 (2018) 052001, arXiv:2107.12275 (ICRC21), PRD 107 (2023) 062004, PRD 107 (2023) 072004, PRD 108 (2023) 072013. The Cosmic-Ray Program of the NA61/SHINE Facility

• Particle Production in Air Showers

- p+C Interactions (31, 60, 90, 120 GeV/c)
- π+C Interactions

 (30, 60, 158, 350 GeV/c)

Galactic Cosmic Rays

• d, $ar{d}$ and $ar{p}$ Production

(p+p at 20, 31, 40, 80, 158, 400 GeV/c)

• Nuclear Fragmentation (C+C, C+CH₂ at 13.5 AGeV/c)

PRC 84 (2011) 034604, PRC 85 (2012) 035210, PRC 89 (2014) 025205, EPJ C74 (2014) 2794, EPJ C76 (2016) 84, EPJ C76 (2016) 198, EPJ C77 (2017) 671 EPJ C77 (2017) 626, PRD 98 (2018) 052001, arXiv:2107.12275 (ICRC21), PRD 107 (2023) 062004, PRD 107 (2023) 072004, PRD 108 (2023) 072013.

energy of last interaction before decay to μ air shower \rightarrow hadron + air $\rightarrow \pi/K + X$

I.C. Maris for NA61/SHINE, Proc. 31st ICRC, (2009)

9/20

 $2/3 E_0 \approx 0.67 E_0$

simple model: π^+ , π^- , π^0

• energy fraction $f\sim 2/3$ to π^\pm

 $1^3 E_0 \approx 0.30 E_0$

- energy fraction $(1-f) \sim 1/3$ to π^0
- \rightarrow fraction of initial energy in hadronic component after n interactions: f^n

 $(2/3)^{2}E_{0}\approx 0.13E_{0}$

 $(2/3)^2 E_0 \approx 0.44 E_0$

 $2/3 E_0 \approx 0.67 E_0$

simple model: π^+ , π^- , π^0 , ...

 $13^{3}E_{0} \approx 0.30 E_{0}$

- $f\sim (2/3+\Delta)$ to ${\sf h}^{\pm},$ baryons
- $(1-f)\sim (1/3-\Delta)$ to π^0
- after n generations: $f = (2/3 + \Delta)^n$ $\approx (2/3)^n (1 + 3/2 n \Delta)$

 $(2/3)^{\circ}E_{0}\approx 0.13\,E_{0}$

 $(2/3)^2 E_0 \approx 0.44 E_0$

number of muons depends on energy fraction *f* of produced hadrons

Measurement of hadron production in π^- -C interactions at 158 and 350 GeV/c with NA61/SHINE at the CERN SPS

Measurement of meson resonar	nce production in π^- + C
DOI 10.1140/epjc/s10052-017-5184-z	Physical Journal C
Eur. Phys. J. C (2017) 77:626	THE EUROPEAN

Measurement of meson resonance production in π^- + (interactions at SPS energies

- projectile: π^- (charged pions are most numerous air-shower particles)
- target: C (very close to to air)
- beam momenta: 158 and 350 GeV/c
- 5×10^6 minimum bias interactions at each energy
- p- p_T spectra of π^+ , π^- , K⁺, K⁻, p, \bar{p} , Λ , $\bar{\Lambda}$, K⁰_S
- x_{F} spectra of ho^0 , ω and K^{*0}
- ightarrow precision data for the tuning of air shower simulations

Pion Production in π^- -C at 158 GeV/c

NA61/SHINE Collaboration PRD 107 (2023) 062004

• p_{T} -integrated spectra • $\frac{1}{N_{\text{prod}}} \int p \frac{dn}{dp} dp = \langle f_{\pi} \rangle \cdot p_{\text{beam}}$

$oldsymbol{ ho}^0$ and $ar{f p}$ Production in π^- -C at 158 GeV/c

NA61/SHINE EPJ C77 (2017) 626

NA61/SHINE PRD 107 (2023) 062004

- forward $oldsymbol{
 ho}^0$ can replace $\pi^0 o \gamma\gamma$
- p
 is proxy for baryon production (p, p
 , n, n
)

$oldsymbol{ ho}^0$ and $ar{f p}$ Production in π^- -C at 158 GeV/c

energy fraction in air shower development:

- $f\sim (2/3+\Delta)$ to ${\sf h}^\pm$, baryons
- $(1-f)\sim (1/3-\Delta)$ to π^0
- after n generations: $f=(2/3+\Delta)^n \\ \approx (2/3)^n \ (1+3/2 \, n \, \Delta)$

energy fraction of ρ^0 and \bar{p} :

"Kaon Puzzle" PRD 107 (2003) 062004 and arXiv:2312.06572

 π^- +C at 158 and 350 GeV/c:

18/20

Particle Production Measurements of Relevance for Cosmic-Ray Physics from NA61/SHINE (published)

reaction	energy	π^+	π^{-}	K^+	K^-	р	p	Λ	$\bar{\Lambda}$	K_S^0	$ ho^0$	ω	K^{*0}	Ξ^0	$\bar{\Xi_0}$	Ξ^+	Ξ^-	ϕ
p+C	31	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		\checkmark								
p+C	120	\checkmark	\checkmark															
π^+ +C	60	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark								
π^-+C	158	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark												
π^-+C	350	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark												
p+p	20	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark											
p+p	31	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark											
p+p	40	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark						\checkmark					\checkmark
p+p	80	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark						\checkmark					\checkmark
p+p	158	\checkmark		\checkmark			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark						

🕀 HEPDa	ta							
Q Search HEPData			51/SHINE	Search				
‡ Max results 🕶	↓F Sort by v	↓ ^z Reverse order	Showing	23 of 23 results				
Date								
2011	2021	Measurement o Kaons in Protor	f Producti -Carbon I	on Properties of Positively Charged nteractions at 31 GeV/c				
		The NA61/SHINE col	laboration A	bgrall, N. ; Aduszkiewicz, A. ; Anticic, T. ; et al.				
Collaboration	Reset	Phys.Rev.C 85 (2012) 035210, 2012.						
× NA61/SHINE	23	🖹 Inspire Record 107	9585 % DOI	10.17182/hepdata.59717				

Summary

CR studies at SPS with NA61/SHINE:

- π +C & p+C interactions
- \rightarrow particle production in air showers
- p+p interactions
- \rightarrow nucleon coalescence
- ightarrow tuning of air shower models
- nuclear fragmentation
- \rightarrow particle production in Galaxy
- ightarrow air shower fluctuations

Outlook

Upcoming Cosmic-Ray Measurements:

- 2024 fragmented Pb beam production of GCR secondaries Li, Be, B
- 2025 primary/fragmented oxygen? O+O interactions, low-mass CR fragmentation
- 2025 high statistics p-p?
- physics program after LS3 (> 2028)?

inside NA61 (Julien Ordan/CERN)

