

LHCb colliding-beam measurements for astroparticle physics

Michael Schmelling - MPI for Nuclear Physics

Outline

- The LHCb experiment
- Inelastic cross-sections
- Inclusive particle production and particle ratios
- Energy flow and multiplicities
- Strangeness and charm production
- Nuclear effects

1 The LHCb experiment (Run 1&2)

LHCb beam configurations

possibility to study hadronic collisions...

as a function of the centre-of-mass energy

for different beam-target combinations

LHCb

Colliding-beam versus fixed-target kinematics

fixed-target beam energy

 $s_{NN} = (E_{\rm beam} + m_N)^2 - E_{\rm beam}^2 \approx 2m_N E_{\rm beam}$ and thus $E_{\rm beam} = \frac{s_{NN}}{2m_N}$

• LHC: $\sqrt{s_{NN}} = 13$ TeV and $E_{\text{beam}} = 9 \cdot 10^7$ GeV

Lorentz boost

$$y_{ ext{boost}} = rac{1}{2} \ln rac{2E_{ ext{beam}}}{m_N} = rac{1}{2} \ln rac{s_{NN}}{m_N^2} = \ln rac{\sqrt{s_{NN}}}{m_N}$$

essentially the entire centre-of-mass final state is boosted forward
 rule of thumb at LHC energies:

- ▶ rapidity range covered in centre-of-mass O(-10 < y < 10)
- rapidity range covered in lab O(0 < y < 20)

Phase space coverage of LHCb

kinematic acceptance for particle production measurements

LHCD

 $\bullet p_T$ range

 $p_T \sim 0.1 \dots 10 \, {
m GeV}/c$

measurements

- total cross-sections
- inclusive particle production
- identified particles
- multiplicities
- energy flow

 y^* : rapidity in NN-centre-of-mass system; forward: (+ values) in proton/beam direction \diamond beam target combinations and NN centre-of-mass energies $\sqrt{s_{NN}}$

$E_{\mathrm{beam}}(p)$	рр	p-Gas	p-Pb/Pb-p	Pb-Gas	Pb-Pb	Xe-Xe
450 GeV	0.90 TeV					
1.38 TeV	2.76 TeV					
2.5 TeV	5 TeV	69 GeV				
3.5 TeV	7 TeV					
4.0 TeV	8 TeV	87 GeV	5 TeV	54 GeV		
6.5 TeV	13 TeV	110 GeV	8 TeV	69 GeV	5 TeV	5.4 TeV

many measurements exists – some with RIVET plugin

definitions of observables may vary

links to selected papers and plots of some key results \rightarrow

2 Inelastic cross-sections

> JHEP 06 (2018) 100, arXiv:1803.10974

Measurement of the inelastic pp cross-section at a centre-of-mass energy of 13 TeV

- $\blacksquare \geqslant 1$ long-lived prompt charged particle with $p>2\,{
 m GeV}$ and $2<\eta<5$
 - > produced directly in the interaction or from decays of short-lived ancestors
 - "short-lived" defined as $\tau < 30 \, \text{ps}$
- I fiducial cross-section: $\sigma_{acc} = 62.2 \pm 0.2 \pm 2.5 \, \text{mb}$

u extrapolation to full phase space: $\sigma_{inel} = 75.4 \pm 3.0 \pm 4.5 \text{ mb}$

> JHEP 02 (2015) 129, arXiv:1412.2500

Measurement of the inelastic pp cross-section at a centre-of-mass energy of $\sqrt{s}=7\,{
m TeV}$

- $\blacksquare \geqslant 1$ long-lived prompt charged particle with $p_{\it T} > 0.2\,{
 m GeV}$ and $2.0 < \eta < 4.5$
 - ▶ long-lived particle with impact parameter I < 0.2 mm at primary vertex
- \blacksquare (updated) fiducial cross-section: $\sigma_{acc} = 56.5 \pm 1.7\,\text{mb}$
- extrapolation to full phase space: $\sigma_{inel} = 68.7 \pm 2.1 \pm 4.5 \text{ mb}$

LHC inelastic cross-section results

3 Inclusive particle production and particle ratios

> JHEP 01 (2022) 166, arXiv:2107.10090

Measurement of prompt charged-particle production in pp collisions at $\sqrt{s}=13~{
m TeV}$

differential cross-section for prompt long-lived charged particles and charge ratios

- produced directly in the interaction or from decays of short-lived ancestors
- \blacktriangleright "short-lived" defined as $\tau < 30\,\text{ps}$
- ▶ kinematic range: $p_T \in [80, 10000]$ MeV, $\eta \in [2.0, 4.8)$

> EPJC 72 (2012) 2168, arXiv:1206.5160

Measurement of prompt hadron production ratios in pp collisions at $\sqrt{s}=$ 0.9 and 7 TeV

particle ratios

$$\frac{\pi^-}{\pi^+} \ , \ \frac{K^-}{K^+} \ , \ \frac{\bar{p}}{p} \ , \ \frac{\bar{\Lambda}}{\Lambda} \quad \text{and} \quad \frac{K^+ + K^-}{\pi^+ + \pi^-} \ , \ \frac{p + \bar{p}}{\pi^+ + \pi^-} \ , \ \frac{p + \bar{p}}{K^+ + K^-} \ , \ \frac{\bar{\Lambda}}{K_S^0}$$

- Iots of information about the hadronization process
- e.g. strangeness and baryon suppression by kaon/pion and baryon/meson ratios

Inclusive production cross-sections

Hich

_HCb results for astroparticle physics - Inclusive particle production and particle ratiosm. Schmelling, January 22, 2024 🛛 10 🛁

Charge ratios

LHCb

LHCb results for astroparticle physics - Inclusive particle production and particle ratiosM. Schmelling, January 22, 2024 11

Strangeness and baryon suppression

→ here the LHCb MC based on Pythia 6 works best

Strange-baryon suppression

→ all considered PYTHIA 6 tunes fail to describe the strangeness-data

4 Energy flow and multiplicities

> EPJC 73 (2013) 2421, arXiv:1212.4755

Measurement of the forward energy flow in pp collisions at $\sqrt{s}=7\,{
m TeV}$

- \blacksquare event classes for measurement of $1/N_{int} dE/d\eta$
 - ▶ inclusive minimum bias: ≥ 1 tracks with $\eta \in [1.9, 4.9]$ and $p > 2 \, \text{GeV}/c$
 - ▶ hard scattering: inclusive && ≥ 1 tracks with $p_T > 3 \,\text{GeV}/c$
 - $\blacktriangleright \ \ \text{diffractive enriched:} \qquad \text{inclusive \&\&} \qquad 0 \ \text{tracks with} \ \eta \in [-3.5, -1.5]$
 - ▶ non-diffractive enriched: inclusive && ≥ 1 tracks with $\eta \in [-3.5, -1.5]$

> EPJC 74 (2014) 2888, arXiv:1402.4430

Measurement of charged particle multiplicities and densities in pp collisions at $\sqrt{s}=7\,{\rm TeV}$ in the forward region

 \square charged particles with $p_T > 0.2 \,\text{GeV}, \, p > 2 \,\text{GeV}, \, 2.0 < \eta < 4.8$

 $\hfill\square$ produced directly of from decays of ancestors with $\sum \tau <$ 10,ps

Energy flow compared to Pythia and cosmic ray models

LHCD

Particle densities and multiplicity distribution at 7 TeV

 none of the models is perfect
 satisfactory modelling by PYTHIA8 and Herwig++

LHCD

5 Strangeness and charm production

- > PLB 693(2010) 69, arXiv:1008.3105 Prompt K_s^0 production in pp collisions at $\sqrt{s} = 0.9$ TeV
 - **D** prompt K_S^0 mesons measure strangeness production
- > JHEP 06 (2017) 147, arXiv:1610.02230

LHCD

Measurements of prompt charm production cross-sections in pp collision at $\sqrt{s}=5\,{
m TeV}$

- **D** prompt D mesons measure charm production; with fragmentation fractions: $\sigma(pp \rightarrow c \bar{c} X)|_{p_T < 8GeV, 2.0 < y < 4.5} = 1193 \pm 3 \pm 67 \pm 58 \,\mu b$
- > NPB 718 (2013) 1, arXiv:1302.2864 Prompt charm production in pp collisions at $\sqrt{s} = 7 \text{ TeV}$
 - $\label{eq:sigma_state} \blacksquare ~~ \sigma(pp \to c \bar{c} X)|_{p_T < 8 {\rm GeV}, 2.0 < y < 4.5} = 1419 \pm 12 \pm 116 \pm 65~\mu{\rm b}$

> JHEP 05 (2017) 074, arXiv:1510.01707 Measurements of prompt charm production cross-sections in pp collisions at $\sqrt{s} = 13$ TeV

 $\label{eq:sigma_state} \blacksquare ~~ \sigma(pp \to c \bar{c} X)|_{p_T < 8 {\rm GeV}, 2.0 < y < 4.5} = 2369 \pm 3 \pm 152 \pm 118 ~ \mu {\rm b}$

Differential K_S^0 production cross-sections

Differential *D*-meson production cross-sections

 $D^0 + \overline{D^0}$

6 Nuclear effects

PRL 131 (2023) 042302, arXiv:2204.10608

Nuclear modification factor of neutral pions in the forward and backward regions in pPb collisions

- > PRL 128 (2022) 142004, arXiv:2108.13115
- Measurement of the nuclear modification factor and prompt charged particle production in pPb and pp

collisions at $\sqrt{s_{NN}}=5\,{
m TeV}$

> PRL 131 (2023) 102301, arXiv:2205.03936 Measurement of the prompt D^0 nuclear modification factor in pPb collisions at $\sqrt{s_{NN}} = 8.16$ TeV

modification of (differential) particle production cross-section by nuclear environment

 $R_{pA}=rac{1}{A}\;rac{d\sigma(pA)}{d\sigma(pp)}$

> PRL 125 (2020) 212001, arXiv:2007.06945

Observation of enhanced double-parton scattering in proton-lead collisions at $\sqrt{s_{NN}}=8.16\,{
m TeV}$

observed enhancement consistent with expectations

Nuclear modification factors for neural pions and charged hadrons

forward

backward

backward enhancement

- 🔲 small energy dependence
- similar for all hadrons

Nuclear modification factors for charm mesons

→ reasonable agreement with expectation from nuclear PDFs