
An event generator frontend for particle
and astroparticle physics

Hans Dembinski1, Anatoli Fedynitch2, Anton Prosekin2

1TU Dortmund, 2Academia Sinica, Taipei, Taiwan

Workshop on the tuning of hadronic interaction models, University Wuppertal,
Jan 22 – 25, 2024

1

• Python frontend to generators written in Fortran & C++

• DPMJet-III*, PhoJet*, EPOS-LHC, Pythia-6.4, Pythia-8.3, QGSJet*, QGSJet- II*, SIBYLL*,

SOPHIA, UrQMD 3.4 (* = several versions)

• Use as Python library or command-line interface

• Open source development on Github

• https://github.com/impy-project/chromo

• BSD 3-clause license, contributions welcome

• Main authors

• Anatoli Fedynitch (project lead), Hans Dembinski, Anton Prosekin

• Available on PyPI

• Authors already use it for science projects

• pip install chromo to install

• For installation from source, see README.md

Quick facts
Cosmic ray and HadROnic interactiOn MOnte-carlo frontend

2

• Applications in (astro)particle physics require simulations of particle
production in interactions of photons, hadrons, and nuclei
• Cosmic ray propagation through galaxy

• Air showers

• Min-bias physics and underlying event at colliders

• No standard event generator (yet)
• Common: compute result with input from several generators to estimate

systematic uncertainty

• Event generators have no standard interface
• Varying event representations, particle IDs, and data structures

• Most generators implemented in Fortran 77
• modern generators in C++

• Majority of scientific computing, education, and data science have
moved to Python ecosystem

• Chromo (formerly named impy) provides
• Standard Python interface over generators

• Taps into rich Python ecosystem for extra features

• CLI to generate HepMC & ROOT output or SVG images

Introduction

DPMJET Models :

• DPMJET-III 3.0.6

• PHOJET 1.12-35

• DPMJET-III 19.1

• PHOJET 19.1

• DPMJET-III 19.3

• PHOJET 19.3

PYTHIA Models :

• PYTHIA 6.4

• PYTHIA 8.3

QGSJet Models :

• QGSJet-01

• QGSJet-II-03

• QGSJet-II-04

SIBYLL Models :

• SIBYLL-2.1

• SIBYLL-2.3

• SIBYLL-2.3c

• SIBYLL-2.3d

• SIBYLL*

Other Models:

• EPOS-LHC

• SOPHIA 2.0

• UrQMD 3.4

• FLUKA (in
progress)

Supported event generators

4

Supported event generators

5

Technical concept

• Multiple layers:

• original Fortran/C++ code of event generators

• a custom Fortran/C++ integration layer

• F2PY/Pybind instructions for building Python
C/API extension modules,

• Python code implementing the library

• Code follows an object-oriented approach with
some functional-style code for internal auxiliary
tasks.

6

GitHub Actions is used for CI/CD for automatic:
• Building with cibuildwheels package
• Testing with pytest package
• Deploying with GitHub Actions

Testing Workflow:
• Any code changes trigger pre-commit.ci code style validation and test

workflows.
• Tests include compilation, building, and installation on Windows,

Ubuntu, and macOS.
• Extensive testing with about 1100 unit tests managed by pytest

framework.
• About 580 tests evaluate event generators across various

permutations.
• Monte Carlo methods are sensitive to small changes in floating-

point calculations.
• Probabilistic comparisons ensure correctness due to differences

in mathematical libraries.

CI/CD and Testing Workflow

7

Automated Distribution

Build Process:
•Wheels consist of around 20 pre-compiled extension
modules.
•Compilation and wheel construction are automated
using CMake integrated with setuptools.
•A wheel is compiled for each platform and Python
version.

Release Workflow:
•Builds wheels for all platform and Python version
combinations.
•Automated testing and upload to PyPI if all tests pass.
•cibuildwheel tool automates system-agnostic wheel
creation.

Automated Distribution:
•Chromo is distributed as Python wheels through PyPI.
•Wheels are available for Windows 64-bit, Linux 64-bit,
macOS Intel, and macOS Apple Silicon.
•Supported Python versions include 3.8, 3.9, 3.10, and
3.11.

8

Command line
interface (CLI)

Writers
(Formatted

I/O)

Generators
(Core Library)

Components and integration

• Core library:
• python scripts
• jupiter notebooks

• Command line interface (CLI):
• pipeline with other programs
• drop-in substitution CRMC

• Writers (Formatted I/O representation of events)
• SVG
• Hepmc
• Root

9

Input

EventKinematicsBase

(input data)

EventKinematics,

(interface, data preparation)

CompositeTarget

CenterOfMass,

FixedTarget

(simplified interface)

Simulation

MCRun

(abstract interface)

“MODELRun”, e.g.
SIBYLLRun, …

(concrete model, runs original

generator)

Sibyll21, Sibyll23, …

(model “flavors”)

Output

EventData

(event data)

MCEvent

(abstract interface to model data)

CrossSectionData

“ModelEvent”, e.g.
SibyllEvent

(NumPy views into generators’
data blocks)

Core architecture

Data flow

In
h

e
ritan

ce

10

Formatted I/O and dependencies

Writer

Svg

pyhepmc,
Graphviz

Hepmc

pyhepmc

Root

uproot

with Hepmc("file.hepmc", model) as writer:
writer.write(event)

Example

HepMC: Lingua franca for
simulation software used at CERN

SIBYLL-2.1, pp, sqrt(s) = 20 GeV

• Writer is abstract class for wrapper classes over libraries that write to the corresponding formats

11

Event visualization

Pythia-6.4 event
sqrt(s) = 15 GeV

• If graphviz is installed, event (EventData object) will be visualized directly in the notebook via
automatic conversion to HepMC3 event using pyhemc library

• Tooltip information about the particles and vertices is available by hovering the mouse over
the lines and nodes

• History (mother and daughter particles) of some event generators (e.g. DpmJet) are repaired
and rectified before output to be a valid HepMC event and be able to processed by Rivet

12

Command line interface
• Interface mimics CRMC to ease transition

• Powered by Python libraries: argparse, rich

• Comprehensive help output and a flexible system to select models via a string

• Informative summary of setup

• Progress bar with ETA, events / sec

• Generate output in HepMC format, ROOT, or generate SVG images

13

Performance: Chromo vs CRMC

• Python code “glue” fast compiled libraries written in Fortran/C++
• Runtime is limited below by the runtime of Fortran/C++ code performance of wrapped event generator
• NumPy array view (pointers) into hepevt common block if possible
• Avoid copy and hot Python loops
• Buffering of output
• Further optimization: put all heavy lifting of EventKinematics into C++ code

• Event rate for pp collisions as a function of the center-of-mass energy (Intel 2.8 GHz Quad-Core i7)
• Chromo starts slower but more efficiently output to disc (buffering)

14

• CRMC: Command-line interface written in C++

• Used by ATLAS, CMS, LHCb, NA61, TOTEM

• Source compilation required, no binary packages

• Output in ROOT, HepMC, LHE formats

• No direct access to event record from Python or other language

• No built-in event visualization

• Extra models only in Chromo

• SIBYLL-(2.1, 2.3, 2.3c), SOPHIA, Pythia-8.3, UrQMD-3.4

• Models not in Chromo

• HIJING, GHEISHA (outdated), UrQMD 1.3 (outdated)

Prior work: CRMC

15

Workflow

from chromo.kinematics import CenterOfMass
from chromo.models import EposLHC

kinematics = CenterOfMass(100, "p", "p")
event_generator = EposLHC(kinematics)

for event in event_generator(1000):
process the result of the collision
represented by ‘event‘ object

Typical workflow

class EventData:
"""
Data structure to keep filtered data.
"""
generator: Tuple[str, str]
kin: EventKinematics
nevent: int
impact_parameter: float
n_wounded: Tuple[int, int]
pid: np.ndarray
status: np.ndarray
charge: np.ndarray
px: np.ndarray
py: np.ndarray
pz: np.ndarray
en: np.ndarray
m: np.ndarray
vx: np.ndarray
vy: np.ndarray
vz: np.ndarray
vt: np.ndarray
mothers: Optional[np.ndarray]
daughters: Optional[np.ndarray]

Event under the hood

class EventData:
…
@property
def p_tot(self):

"""Return total momentum in
GeV/c."""

@property
def eta(self):

"""Return pseudorapidity."""

@property
def y(self):

"""Return rapidity."""

@property
def xf(self):

"""Return Feynman x_F.""“

…

Event properties

Installation

16

Example: multiplicity

from chromo.constants import TeV
from chromo.kinematics import CenterOfMass
from chromo.models import Sibyll23d, DpmjetIII193, EposLHC

import boost_histogram as bh
hist_pid = bh.Histogram(bh.axis.StrCategory([], growth=True),

bh.axis.IntCategory([], growth=True))

kinematics = CenterOfMass(5*TeV, "proton", "O16")
models = [Sibyll23d, DpmjetIII193, EposLHC]
nevents = 1000

for model in models:
event_generator = model(kinematics, seed=1)
for event in event_generator(nevents):

event_fs = event.final_state()
hist_pid.fill(event_generator.pyname, event_fs.pid)

Import libraries

Prepare histograms (our choice boost.histogram)

Set kinematics and compared models

Initialize models in the loop and generate 1000 event for each

17

Example: other distributions

18

Additional options

evt_kin = FixedTarget(100, "p", "p")
generator = QGSJetII04(evt_kin)
generator.final_state_particles = [211, -211, 13, -13]
for any other generator:
self._activate_decay_handler(on=True)
generator.final_state_particles = select_long_lived(tau_stable)

To configure an `QGSJetII04` event generator to treat charged

pions(PDG ID 211 and -211) and muons (PDG ID 13 and -13) as

stable particles in the final state:

• All generated particles are checked to follow
stable/unstable settings

• Some generators do not decay particles
• Pythia8 is used to decay any particles via

Pythia8DecayHandler
• Set by default only for QGSJet as it incur some overhead

• History (mother and daughter particles) of some event
generators (e.g. DpmJet) are repaired and rectified
before output to be a valid HepMC event and be able to
processed by Rivet

generator._restore_beam_and_history = False

Repair event history and pre-/appending beam particle info can
be optionally disabled to save some CPU time

19

• Easy comparisons between a wide variety of event generators
• Easy visualization and manipulation of events using rich Python ecosystem
• Easy installation: automated packaging and distribution of binaries via PyPI for Linux, MacOS, and Windows

• Excellent choice for application and education in (astro)particle physics

• Easy change of simulation settings (on-the-fly)
• Command-line interface

• Mimics CRMC to ease transition

• Fast thin wrapper, processing optimized
• Output in standard formats

• HepMC (via pyhepmc), optionally gzipped
• Root (via uproot)

• SVG images

• Used in cosmic ray community , high-energy neutrino physics (IceCube), and HEP community (LHCb)
• To-do

• Finish packaging for Windows (Pythia 8)
• Add LHE output (via pyhepmc)
• Optimize for fast the changes in kinematics
• Add parameter settings for some generators (Pythia 8)
• Add more event generators, e.g. EPOS 4.0, Fluka

Summary

20

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

