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• Python frontend to generators written in Fortran & C++

• DPMJet-III*, PhoJet*, EPOS-LHC, Pythia-6.4, Pythia-8.3, QGSJet*, QGSJet- II*, SIBYLL*,

SOPHIA, UrQMD 3.4 (* = several versions)

• Use as Python library or command-line interface

• Open source development on Github

• https://github.com/impy-project/chromo

• BSD 3-clause license, contributions welcome

• Main authors

• Anatoli Fedynitch (project lead), Hans Dembinski, Anton Prosekin

• Available on PyPI

• Authors already use it for science projects

• pip install chromo to install

• For installation from source, see README.md

Quick facts
Cosmic ray and HadROnic interactiOn MOnte-carlo frontend
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• Applications in (astro)particle physics require simulations of particle
production in interactions of photons, hadrons, and nuclei
• Cosmic ray propagation through galaxy

• Air showers

• Min-bias physics and underlying event at colliders

• No standard event generator (yet)
• Common: compute result with input from several generators to estimate

systematic uncertainty

• Event generators have no standard interface
• Varying event representations, particle IDs, and data structures

• Most generators implemented in Fortran 77
• modern generators in C++

• Majority of scientific computing, education, and data science have
moved to Python ecosystem

• Chromo (formerly named impy) provides
• Standard Python interface over generators

• Taps into rich Python ecosystem for extra features

• CLI to generate HepMC & ROOT output or SVG images

Introduction



DPMJET Models :

• DPMJET-III 3.0.6

• PHOJET 1.12-35

• DPMJET-III 19.1

• PHOJET 19.1

• DPMJET-III 19.3

• PHOJET 19.3

PYTHIA Models :

• PYTHIA 6.4

• PYTHIA 8.3

QGSJet Models :

• QGSJet-01

• QGSJet-II-03

• QGSJet-II-04

SIBYLL Models :

• SIBYLL-2.1

• SIBYLL-2.3

• SIBYLL-2.3c

• SIBYLL-2.3d

• SIBYLL*

Other Models:

• EPOS-LHC

• SOPHIA 2.0

• UrQMD 3.4

• FLUKA (in 
progress)

Supported event generators
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Supported event generators
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Technical concept

• Multiple layers:

• original Fortran/C++ code of event generators 

• a custom Fortran/C++ integration layer

• F2PY/Pybind instructions for building Python 
C/API extension modules, 

• Python code implementing the library

• Code follows an object-oriented approach with 
some functional-style code for internal auxiliary 
tasks.
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GitHub Actions is used for CI/CD for automatic:
• Building with cibuildwheels package 
• Testing with pytest package
• Deploying with GitHub Actions 

Testing Workflow:
• Any code changes trigger pre-commit.ci code style validation and test 

workflows.
• Tests include compilation, building, and installation on Windows, 

Ubuntu, and macOS.
• Extensive testing with about 1100 unit tests managed by pytest

framework.
• About 580 tests evaluate event generators across various 

permutations.
• Monte Carlo methods are sensitive to small changes in floating-

point calculations.
• Probabilistic comparisons ensure correctness due to differences 

in mathematical libraries.

CI/CD and Testing Workflow
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Automated Distribution

Build Process:
•Wheels consist of around 20 pre-compiled extension 
modules.
•Compilation and wheel construction are automated 
using CMake integrated with setuptools.
•A wheel is compiled for each platform and Python 
version.

Release Workflow:
•Builds wheels for all platform and Python version 
combinations.
•Automated testing and upload to PyPI if all tests pass.
•cibuildwheel tool automates system-agnostic wheel 
creation.

Automated Distribution:
•Chromo is distributed as Python wheels through PyPI.
•Wheels are available for Windows 64-bit, Linux 64-bit, 
macOS Intel, and macOS Apple Silicon.
•Supported Python versions include 3.8, 3.9, 3.10, and 
3.11.
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Command line 
interface (CLI)

Writers
(Formatted 

I/O) 

Generators 
(Core Library)

Components and integration

• Core library:
• python scripts 
• jupiter notebooks

• Command line interface (CLI):
• pipeline with other programs
• drop-in substitution CRMC

• Writers (Formatted I/O representation of events)
• SVG
• Hepmc
• Root
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Input

EventKinematicsBase

(input data)

EventKinematics,

(interface, data preparation)

CompositeTarget

CenterOfMass, 

FixedTarget

(simplified interface)

Simulation

MCRun

(abstract interface)

“MODELRun”, e.g. 
SIBYLLRun, …

(concrete model, runs original 

generator)

Sibyll21, Sibyll23, …

(model “flavors”)

Output

EventData

(event data)

MCEvent

(abstract interface to model data)

CrossSectionData

“ModelEvent”, e.g. 
SibyllEvent

(NumPy views into generators’ 
data blocks)

Core architecture

Data flow

In
h

e
ritan

ce
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Formatted I/O and dependencies

Writer

Svg

pyhepmc, 
Graphviz

Hepmc

pyhepmc

Root

uproot

with Hepmc("file.hepmc", model) as writer:
writer.write(event)

Example

HepMC: Lingua franca for
simulation software used at CERN

SIBYLL-2.1, pp, sqrt(s) = 20 GeV

• Writer is abstract class for wrapper classes over libraries that write to the corresponding formats 
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Event visualization

Pythia-6.4 event
sqrt(s) = 15 GeV

• If graphviz is installed, event (EventData object)  will be visualized directly in the notebook via 
automatic conversion to HepMC3 event using pyhemc library

• Tooltip information about the particles and vertices is available by hovering the mouse over 
the lines and nodes

• History (mother and daughter particles) of some event generators (e.g. DpmJet) are repaired 
and rectified before output to be a valid HepMC event and be able to processed by Rivet
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Command line interface
• Interface mimics CRMC to ease transition

• Powered by Python libraries: argparse, rich

• Comprehensive help output and a flexible system to select models via a string

• Informative summary of setup

• Progress bar with ETA, events / sec

• Generate output in HepMC format, ROOT, or generate SVG images
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Performance: Chromo vs CRMC

• Python code “glue” fast compiled libraries written in Fortran/C++ 
• Runtime is limited below by the runtime of Fortran/C++ code performance of wrapped event generator
• NumPy array view (pointers) into hepevt common block if possible
• Avoid copy and hot Python loops
• Buffering of output
• Further optimization: put all heavy lifting of EventKinematics into C++ code

• Event rate for pp collisions as a function of the center-of-mass energy (Intel 2.8 GHz Quad-Core i7)
• Chromo starts slower but more efficiently output to disc (buffering)

14



• CRMC: Command-line interface written in C++

• Used by ATLAS, CMS, LHCb, NA61, TOTEM

• Source compilation required, no binary packages

• Output in ROOT, HepMC, LHE formats

• No direct access to event record from Python or other language

• No built-in event visualization

• Extra models only in Chromo

• SIBYLL-(2.1, 2.3, 2.3c), SOPHIA, Pythia-8.3, UrQMD-3.4

• Models not in Chromo

• HIJING, GHEISHA (outdated), UrQMD 1.3 (outdated)

Prior work: CRMC
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Workflow 

from chromo.kinematics import CenterOfMass
from chromo.models import EposLHC

kinematics = CenterOfMass(100, "p", "p")
event_generator = EposLHC(kinematics)

for event in event_generator(1000):
# process the result of the collision
# represented by ‘event‘ object

Typical workflow

class EventData:
"""
Data structure to keep filtered data.
"""
generator: Tuple[str, str]
kin: EventKinematics
nevent: int
impact_parameter: float
n_wounded: Tuple[int, int]
pid: np.ndarray
status: np.ndarray
charge: np.ndarray
px: np.ndarray
py: np.ndarray
pz: np.ndarray
en: np.ndarray
m: np.ndarray
vx: np.ndarray
vy: np.ndarray
vz: np.ndarray
vt: np.ndarray
mothers: Optional[np.ndarray]
daughters: Optional[np.ndarray]

Event under the hood

class EventData:
…
@property
def p_tot(self):

"""Return total momentum in 
GeV/c."""

@property
def eta(self):

"""Return pseudorapidity."""

@property
def y(self):

"""Return rapidity."""

@property
def xf(self):

"""Return Feynman x_F.""“

…

Event properties

Installation
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Example: multiplicity 

from chromo.constants import TeV
from chromo.kinematics import CenterOfMass
from chromo.models import Sibyll23d, DpmjetIII193, EposLHC

import boost_histogram as bh
hist_pid = bh.Histogram(bh.axis.StrCategory([], growth=True),

bh.axis.IntCategory([], growth=True))

kinematics = CenterOfMass(5*TeV, "proton", "O16")
models = [Sibyll23d, DpmjetIII193, EposLHC]
nevents = 1000

for model in models:
event_generator = model(kinematics, seed=1)
for event in event_generator(nevents):

event_fs = event.final_state()
hist_pid.fill(event_generator.pyname, event_fs.pid)

Import libraries

Prepare histograms (our choice boost.histogram)

Set kinematics and compared models 

Initialize models in the loop and generate 1000 event for each  
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Example: other distributions
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Additional options

evt_kin = FixedTarget(100, "p", "p")
generator = QGSJetII04(evt_kin)
generator.final_state_particles = [211, -211, 13, -13]
# for any other generator:
self._activate_decay_handler(on=True)
generator.final_state_particles = select_long_lived(tau_stable)

To configure an `QGSJetII04` event generator to treat charged 

pions(PDG ID 211 and -211) and muons (PDG ID 13 and -13) as 

stable particles in the final state:

• All generated particles are checked to follow 
stable/unstable settings

• Some  generators do not decay particles
• Pythia8 is used to decay any particles via 

Pythia8DecayHandler
• Set by default only for QGSJet as it incur some overhead

• History (mother and daughter particles) of some event
generators (e.g. DpmJet) are repaired and rectified 
before output to be a valid HepMC event and be able to 
processed by Rivet

generator._restore_beam_and_history = False

Repair event history and pre-/appending beam particle info can 
be optionally disabled to save some CPU time
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• Easy comparisons between a wide variety of event generators
• Easy visualization and manipulation of events using rich Python ecosystem
• Easy installation: automated packaging and distribution of binaries via PyPI for Linux, MacOS, and Windows

• Excellent choice for application and education in (astro)particle physics

• Easy change of simulation settings (on-the-fly)
• Command-line interface

• Mimics CRMC to ease transition

• Fast thin wrapper, processing optimized
• Output in standard formats

• HepMC (via pyhepmc), optionally gzipped
• Root (via uproot)

• SVG images

• Used in cosmic ray community , high-energy neutrino physics (IceCube), and HEP community (LHCb)
• To-do

• Finish packaging for Windows (Pythia 8)
• Add LHE output (via pyhepmc)
• Optimize for fast the changes in kinematics
• Add parameter settings for some generators (Pythia 8)
• Add more event generators, e.g. EPOS 4.0, Fluka

Summary
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