

Radio detection and its relevance for air shower physics

Tim Huege (KIT & VUB) for the Pierre Auger Collaboration

Air-shower radio emission

EAS emit very short, *coherent*, forward-beamed radio pulses

- Typical detection bands: 30-80 MHz, 50-200 MHz, but up to 1 GHz
- Originally discovered 1965 (after predictions), field revived in early 2000s
- Nowadays very mature technique, both experimentally and theoretically

Simulating radio emission

- Within particle MC (C7, C8, AireS) calculate radio emission from each e⁻ and e⁺
- "first-principles" classical electrodynamics
- Excellent agreement with data

N. Karastathis for C8 PoS(ICRC2023)425 modulus

Energy Fluence [eVm⁻²]

Radio emission physics paradigm

primary effect: geomagnetic field induces *time-varying* transverse currents

Kahn & Lerche (1967)

secondary effect: *time-varying* net charge excess (Askaryan effect)

Askaryan (1962,1965)

radio = electromagnetic component

"radial"

"V X **B**^{**} Diagrams by H. Schoorlemmer & K.D. de Vries

Radio emission physics paradigm – refined

primary effect: geomagnetic field induces *time-varying* transverse currents

Kahn & Lerche (1967)

secondary effect: *time-varying* net charge excess (Askaryan effect)

Karlsruhe Institute of Technology

tertiary effect (high magnetic fields, very inclined air showers): geosynchrotron radiation plus coherence losses

Chiche, Zhang, Kotera, TH et al., PoS(ICRC2023)394

Askaryan (1962,1965)

Tim Huege <tim.huege@kit.edu>

Radio detection of extensive air showers

- Provides calorimetric measurement of electromagnetic energy of air showers
- 100% duty cycle, atmosphere uncritical
- For vertical showers proven to provide Xmax information Auger PRL & PRD (2024)
- Zenith Angle ⇔ Spacing ⇔ CR energy
 - Vertical showers need dense arrays, access low energies
 - Inclined showers long predicted to be measurable with sparse arrays, access high energies

see T. Huege, A. Haungs, UHECR2014, arXiv:1507.07769

Radio detection of extensive air showers

- Provides calorimetric measurement of electromagnetic energy of air showers
- 100% duty cycle, atmosphere uncritical
- For vertical showers proven to provide Xmax information Auger PRL & PRD (2024)
- Zenith Angle ⇔ Spacing ⇔ CR energy
 - Vertical showers need dense arrays, access low energies
 - Inclined showers long predicted to be measurable with sparse arrays, access high energies

see T. Huege, A. Haungs, UHECR2014, arXiv:1507.07769

Auger Engineering Radio Array results

- Hundreds of inclined air showers detected with ~6 km² of AERA
- Inclined air showers indeed measurable with arrays with >1km spacing
- Can measure at highest energies with 1.5 km Auger grid

As part of AugerPrime: Auger Radio Detector

- Mount a dualpolarized radio antenna (30-80 MHz) on each SD station
- 1660 radio
 antennas over
 3000 km²
- Mass sensitivity for inclined air showers:
 - radio: em
 WCD: muons
- Beautifully complementary to WCD/SSD

Auger Radio Detector current status

- January 2024: ~800 antennas in the field, ~200 operating
- Mechanical and electronics design mature and proven
- Trigger for now from WCD, but working on hybrid trigger

Auger RD measured air shower (I)

RD stations participated in

reconstruction

- Amelie

Jaco

— Lourdes

— La Morocha

Le Qui Don

Mariano

Nuria Jr.

Pavel

— Simona

None

🗶 CoreSD

CoreRD

Without Radio

Direction

• fit

LDF fit

geoFluence

🛨 With Radio Signal

WCD-measured

WCD-predicted

----- Chachahuen

Generalife

Tim Huege <tim.huege@kit.edu>

Workshop on tuning hadronic interaction models - 01/2024

Auger RD measured air shower (II)

Tim Huege <tim.huege@kit.edu>

Auger RD measured air shower (III)

ò

500

1000

460k

440k

 $E_{SD} = 4.88 \pm 0.8 \ EeV$

 $\theta_{SD} = 81.1 \pm 0.2 \ deg$

 $N_{10} = 0.9 \pm 0.1$

 $\phi_{SD} = 202.1 \pm 0.2 \ deg$

WCD Reconstruction (11 stations)

Workshop on tuning hadronic interaction models - 01/2024

Tim Huege <tim.huege@kit.edu>

Expected Performance of Auger-RD see PoS(ICRC2021)228

Fully realistic end-to-end simulation study

Detection efficiency

- Requires measurable signal in at least three radio antennas
- 100% efficiency for θ>70° and E>10^{18.8} eV

Expected event statistics in 10 years

Event reconstruction

Newly developed LDF model*

- 2 parameter + core coordinates
- Derive start values from WCD (use radio rec. arrival direction)
- Integral yields energy estimator

* Signal model and event reconstruction for the radio detection of inclined air showers, F. Schlüter, T. Huege, JCAP

Event reconstruction

Newly developed LDF model*

- 2 parameter + core coordinates
- Derive start values from WCD (use radio rec. arrival direction)
- Integral yields energy estimator

* Signal model and event reconstruction for the radio detection of inclined air showers, F. Schlüter, T. Huege, JCAP

Predicted energy resolution of Auger RD

Showers with at least 5 signal stations and $\theta > 68^{\circ}$

quality cuts: ~95% efficiency

Resolution improves with energy

Tim Huege <tim.huege@kit.edu>

Mass composition sensitivity 50/50 p-Fe composition with 10-year RD spectrum 5 949 479 293 126 60 8 Figure of Merit: 2.5 Fe p $FOM = \frac{|\langle r_{\rm p} \rangle - \langle r_{\rm Fe} \rangle|}{\sqrt{\sigma_{r_{\rm p}}^2 + \sigma_{r_{\rm Fe}}^2}}$ $FOM = 1.61 \pm 0.04$ Equal to X_{max} with perfect resolution! Goal for the Upgrade: 1.5 1920 events: $\theta > 70^{\circ}$ & lg E_{em} > 19 0 20.0 19.0 19.2 19.4 19.6 19.8 $\log_{10}(E_{\rm CR}/{\rm eV})$

Karlsruhe Institute of Technology

Muon number measurements

- Very high-statistics measurements of muon number with WCD+RD at highest energies
- Especially measurement of the variation of the muon number with will be very powerful

25

At lower energies: Auger Engineering Radio Array

- Similar approach with vertical air showers combining AERA and 750 m SD infill data $(10^{17} \text{ to few } 10^{18} \text{ eV})$
- Proof of principle with 1500 m SD data
- Less clean because of EM contamination in particle measurement

Pierre Auger Coll., PoS(ICRC2023)345

Radio-interferometric reconstruction

- Radio pulses contain phase information
- LOPES successfully used interferometry
- Recent simulation studies and first AERA data show Xmax sensitivity
 - We would have N_e, N_μ and Xmax
- Requires 1 ns detector synching

Atmospheric muons at PeV energies in radio neutrino detectors

Pyras et al. JCAP10(2023)043

Identify muon by measuring in-ice particle cascade and parent air shower \rightarrow likely detectable with the radio array of IceCube-Gen2

Important background to radio detection of neutrinos, but 2 orders of magnitude uncertainty

 \rightarrow Need better predictions

Summary

- Radio delivers very clean measurement of EM component of EAS
- For vertical showers (lower energies), delivers also Xmax
- We are equipping Auger with 1660 radio antennas (30-80 MHz)
 - This will allow high-statistics, high-quality measurements of the muon number and its fluctuations in the highest-energy air showers
 - Design proven, mass production ongoing, deployment complete in 2024
 - Potential also to combine 750 m infill RD data with underground muon detector data and further exploit AERA data (10¹⁷ to few 10¹⁸ eV)
- With interferometry, we could even measure EM component, muons and Xmax at the same time at very high energies – stay tuned!

Backup

Predicted aperture

Lower zenith angles make large contribution, but need high energy for full efficiency

Higher zenith angles fully efficient, but make smaller contribution

contained events

Hybrid measurements RD-WCD

RD calibration concept

thermal cycling (aging) LNA & digitizer

absolutely calibrated signals

end-to-end calibration in lab LNA & digitizer

Galactic emission

8 10 12 14 16 18 20 22

LST

Measured power dataset:

20

15 10 Iowol

simulation of antenna pattern NEC

in-situ calibration with reference antenna

Tim Huege <tim.huege@kit.edu>

Workshop on tuning hadronic interaction models - 01/2024

70

60

50

30

0 2 4 6

frequency [MHz]

Measurement of Galactic emission

Measured power dataset:

Simulated dataset + fitted noise

systematic uncertainty ~10%