

The role of direct muon measurements in Auger

Markus Roth for the Auger Collaboration Institute for Astroparticle Physics

Workshop on tuning of hadronic interaction models 22-25 January 2024

The Pierre Auger collaboration

Argentina Australia Brasil Colombia* Czech Republic France Germany Italy Mexico Netherlands Poland Portugal Romania Slovenia Spain USA

*associated

17 countries, ~90 institutions, ~400 authors

Pierre Auger Observatory

The Pierre Auger Observatory

- East of Andes
- Province of Mendoza, Argentina
- Area 3000 km²
 (4x Berlin)
- 2000: Engineering Array
- 2004: start...
- 2008: ...end of construction of Auger
- 2024: end of construction of AugerPrime

The Pierre Auger Observatory

Fluorescence detector (FD)

- 4 sites
 - 0-30°
 - E>10¹⁸ eV
- HEAT
 - 30°-60°
 - E>10¹⁷ eV

Surface detector array (SD)

- Grid of 1500 m / 750 m / 433 m
 - 3000 km² / 24 km²
 - 1660 stations / 61 / 12
 - Water Cherenkov Tanks (WCD)
 - Scintillation Detectors (SSD)
 - Radio Antennae (RD)
 - E>10^{18.5} eV
- Grid of 750 m and 433 m
 - Incl. UMD muon counters
 - E>10^{17.5} eV

Radio array (AERA)

- 153 stations
- 17 km²

Fluorescence detector (FD)

- 4 sites
 - 0-30°
 - E>10¹⁸ eV
- HEAT
 - 30°-60°
 - E>10¹⁷ eV

Surface detector array (SD)

- Grid of 1500 m / 750 m / 433 m
 - 3000 km² / 24 km²
 - 1660 stations / 61 / 12
 - Water Cherenkov Tanks (WCD)
 - Scintillation Detectors (SSD)
 - Radio Antennae (RD)
 - E>10^{18.5} eV
- Grid of 750 m and 433 m
 - Incl. UMD muon counters
 - E>10^{17.5} eV

Radio array (AERA)

- 153 stations
- 17 km²

Deployment (4 positions/month)

Hybrid detection

Fluorescence Detector (FD):

- calorimetric measurement of energy
- ca. I 5% duty cycle

Surface Detector (SD):

- data driven shape of Lateral Distribution function (LDF)
- optimal distance at 1000 m
- ca. 100% duty cycle

100% duty cycle

Event observed with Auger Observatory

AugerPrime data WCD, SSD, UMD, AERA

- Water Cherenkov Detector (WCD)
- Scintillation Surface Detector (SSD)
- Underground Muon Detector (UMD)
- Radio Detector (AERA)
- New electronics: 40 MHz \rightarrow 120 MHz
- Additional data AND correlations available
- Detailed timing information of signals available (time traces)
- No small PMT in WCD in place
- Not all SSDs in place at time of the event

al/VEM

or MIP Peak

Signal/VEM (

Different zenith ranges probe different stages of shower evolution

\Rightarrow muon dominated

Hadronic interactions: **Muon deficit in simulations**

30-70% deficit

Air shower modelling: **CORSIKA**

Showers with large zenith \Rightarrow muon dominated

rmination for the whole array: inversion method

11

Indirect muon determination for the whole array: Universality

- Extraction of physics observables like E, X_{max} and R_µ from underlying universal shower properties
- WCD data only hardly allow extraction of more than 1 observable due to strong correlations (left plot; MC data)
- WCD + SSD provide *independent* (less dependent) information of shower evolution (right plot; MC data)

For sake of simplicity:

- Showing WCD data only (MC data)
- Single event @ 10^{19.5} eV
- Zenith 36°

Direct measurement: **Underground Muon Detector event**

- Recored in 10/2023
- Energy ~ 10¹⁸ EeV

Timing information of all 3 detectors: WCD, SSD and UMD

Combined information contains correlations to be used Allows to transfer the *direct* muon measurement to the *indirect* determined N_{μ}

14

Underground Muon Detector (UMD) The Engineering Array up to 2017 vs now

Aim:

- Muon discrepancy in simulations
- Validation of AugerPrime
- Model tests with direct • muon measurement

🔘 w/UMD

PMT readout: •til 2017

- 64 pixel PMT (Hamamatsu)
- •7 positions

- **SiPM** readout:
- Starting in 2017
- Deployed by end of 2024
- •64 pixel SiPM
- •61 positions

32 · · · 1

(111XXXXX)

(1111XXXX) + Integrator

16

Counting strategies

	$\widehat{\mu}$	\widehat{N}_{μ}	n_w
	$-n_s \ln\left(1-\frac{k}{n_s}\right)$	$\frac{\ln\left(1-\frac{k}{n_s}\right)}{\ln\left(1-\frac{1}{n_s}\right)}$	1
	$-\sum_{j=1}^{n_w} n_s \ln\left(1-\frac{k_j}{n_s}\right)$	$\sum_{j=1}^{n_w} \frac{\ln\left(1 - \frac{k_j}{n_s}\right)}{\ln\left(1 - \frac{1}{n_s}\right)}$	171
ntered	$-\sum_{1}^{j=n_w} n_s \ln\left(1-\frac{k_j}{n_s}\right)$	$\sum_{j=1}^{n_w} \frac{\ln\left(1 - \frac{k_j}{n_s}\right)}{\ln\left(1 - \frac{1}{n_s}\right)}$	170-171
	$-\sum_{j=1}^{n_w} n_s \ln\left(1-\frac{k_j}{n_s-n_{\mathrm{inhib},j}}\right)$	$\sum_{j=1}^{n_w} \frac{n_s}{n_s - n_{\text{inhib},j}} \frac{\ln\left(1 - \frac{k_j}{n_s - n_{\text{inhib},j}}\right)}{\ln\left(1 - \frac{1}{n_s - n_{\text{inhib},j}}\right)}$	2048

μ: average number of muons expected from EASs
N_μ: number of impinging muons
n_{w:} number of windows
k: Occupancy

Further levels of complexity in determining N_µ

Random WCD trigger \rightarrow single muons

Efficiency of binary channels

New electronics → Improved transfer rate

Further levels of complexity in determining N_{μ}

Inclined muons going through multiple scintillator bars cause overcounting

Parametrized relative over-counting as fct. of $\Delta \phi_m$ with simulations

 $f_{\text{clip}}\left(\theta,\Delta\varphi_{\mathrm{m}}\right) = a(\theta) + b(\theta) \cdot |\sin\Delta\varphi_{\mathrm{m}}|$

Inclined muons going through multiple scintillator bars cause overcounting

Corrected over-counting as fct. of distance

Results from engineering array

- Lateral Distribution Function (LDF) fitted
- ρ₃₅: Estimator of muon density at 450 m corrected for atmospheric attenuation (CIC)
- 1 year of data acquisition

Uncertainty Source	Relative Syst. Unc.	Percent
Module efficiency corr.	$\sigma_{\rm sys, eff}/\rho_{450}$	9
MLDF parametrization	$\sigma_{\rm sys, MLDF}/\rho_{450}$	8
Electronics calibration	$\sigma_{\rm sys,cal}/\rho_{450}$	3
Soil density	$\sigma_{\rm sys, soil}/\rho_{450}$	2
Attenuation correction	$\sigma_{\rm sys,f_{att}}/f_{\rm att}$	2
Total	$\sigma_{\rm sys}, \rho_{35}/\rho_{35}$	14

Results from engineering array

Comparison with other Auger data

- Comparison muon content and X_{max}
- Muon deficit in lower energies (38% EPOS-LHC, 50% QGSJetII-04)
- Qualitative agreement with evolution from X_{max}?

22

- Underground Muon Detector is expected to be fully deployed by end of 2024
- It will provide a direct measurement of muon component
 - <ρ35>
 - \bullet **σ**_{ρ35}
 - Timing
 - ➡ Mass composition ↔ Hadronic models
- Cross-calibration of indirect muon estimates of the lacksquare1500m array
- Muon deficit wrt
 - QGSJetII-04 (50%) and
 - EPOS-LHC (38%)
- New SiPM results to be expected soon

Summary

