MOdifed CHaracteristics of Hadronic Interactions:

how changes of general features of interactions impact air shower simulations in CORSIKA 7

From octopuses to cyanobacteria?

Institute of Physics of the Czech Academy of Sciences

Jan Ebr, Jiří Blažek, Jakub Vícha, Tanguy Pierog, Eva Santos, Petr Trávníček, Nikolas Denner, Ralf Ulrich

Modified hadronic interactions

Phys. Rev. D, 83:054026, 2011

- individual changes of multiplicity, elasticity and cross-section in CONEX - 1D simulations
- 215 citations

CONEX in Corsika (since 2009) - allows to use the same code and get 3D information - technical issues, validation

CONEX in Corsika / Corsika ratio

CONEX in Corsika / Corsika ratio

CONEX / Corsika ratio

CORSIKA-CONEX vs. CORSIKA vs.
CONEX for longitudinal profiles

CORSIKA-CONEX vs. CORSIKA for particles at ground

Variance/mean for proton zenith $=37.72$

What's new in the CORSIKA-CONEX implementation?

- all three types of modifications possible in parallel
- 3D cube of of parameters

- independent thresholds for each modification
- fully configurable from CORSIKA steering files
- large spectrum of possible "observables"

The MOCHI library

CORSIKA 7.741 with CONEX option, Sibyll 2.3d

$$
f\left(E, f_{19}\right)=1+\left(f_{19}-1\right) \cdot \frac{\log _{10}\left(E / E_{\mathrm{thr}}\right)}{\log _{10}\left(10 \mathrm{EeV} / E_{\mathrm{thr}}\right)}
$$

- nuclear projectiles treated as a set of p-Air interactions
- only straightforward in Sibyll
- see POS(ICRC2023)245, POS(ICRC2021)441 and EPJ WoC 283:05005

75 combinations

- energy $10^{18.7} \mathrm{eV}$
- proton and iron
- 5 zenith angles
- 1000 showers per „bin"
- 750000 showers

"Allowed" modifications and thresholds

Cross-section ($E_{\text {thr }}=10^{16} \mathrm{eV}$)

- well constrained for p-p at LHC to a few \%
- unc. in conversion to p-A limited by CMS p-Pb measurement
- air-shower measurement exists, but is affected by models!
- $\Lambda_{\text {p-air }}$ fitted from tails of $X_{\text {max }}$ distributions
- depends strongly on elasticity changes
- composition-related systematics

Multiplicity ($E_{\mathrm{thr}}=10^{15} \mathrm{eV}$)

- no p-A data
- limited rapidity coverage

Elasticity ($E_{\mathrm{thr}}=10^{14} \mathrm{eV}$)

- difficult to measure at accelerators, limits from nuclear emulsion chambers
- recent LHCf neutron elasticity measurement?
- range of modifications limited by internal consistency

Longitudinal profile: depth of maximum $X_{\max }$

- for proton, fluctuations correlated with mean value, particularly for constant change of multiplicity
- for iron, mean $X_{\max }$ changes $\sim 40 \%$ w.r.t proton, fluctuations virtually unchanged

Ground particles: energy density of EM particles $r=1000 \mathrm{~m}$

- $\mathrm{e}^{+} / \mathrm{e}^{-}$and photon energy density, $r=1000 \mathrm{~m}$ perpendicularly to shower axis, LDF fitting to smoothen
- changes w.r.t. reference values for given primary and zenith
- for given zenith angle strong correlation with $\delta X_{\max }$ (zenith 60 deg signal too weak)

Ground particles: number of muons at 1000 m vs. all muons

Number of muons at 1000 m vs. all muons: correlation with $X_{\max }$

More different for vertical showers, less for inclined

Muons at 1000 m at fixed $D X$

- remove effects of shifting $X_{\text {max }}$ on S_{μ} by fitting a dependence on distance between $X_{\max }^{\mu}$ and ground

Pierre Auger Observatory analysis: arXiv:2401.10740

- $\delta X_{\text {max }}$ and $R_{\text {had }}$ from complex fit of data, simple scaling to S_{μ}

Dependence on A

- Auger method assumes single modification factors for all primaries
- Auger method also fits mass composition, which would change while using a modified model

Adding muons and proton/iron separation

Ratio between number of muons for iron and proton tends down when muons are added - whatever the answer to the muon problem is, it may make primary separation more difficult

Conclusions

- changing cross-section, elasticity and multiplicity within reasonable limits can have major impact on air-shower properties
- some effects are a direct consequence of changing the depth of maximum, but some are not
- the changes of hadronic interactions indicated by the Pierre Auger Observatory are just reachable - but only with a combination of modifications!
- a wealth of other features can be studied - see POS(ICRC2023)245 (full papers soon)
- even if some modifications are not realistic, we can learn interesting insights

BACKUP

Anomalous profiles

Side test: high-statistics (200 000 showers per bin)

- single-modification only in CONEX
- anomalous profiles by abs. values of residuals w.r.t . GH fit - well correlated with „double-bumpiness"
- (ratio of X^{2} w.r.t. double-GH fit)
- fraction rises with elasticity

Ground particles: EM lateral distribution slope β

- LDF fitted $S_{\mathrm{EM}}(r)=N[(r / 700)(1+r / 700)]^{-\beta_{\mathrm{EM}}}$
elasticity
- $\delta X_{\max }$ correlation even stronger - almost purely effect of geometry

Ground particles: relative muon number fluctuations at 1000 meters

- not correlated with absolute changes in muon number, sensitive to high elasticity changes

Correlation of muon signal and depth of maximum

Gideon-Hollister ranking correlation coefficient r_{G} for $S_{\mu}(1000)$ and $X_{\max }$

- strongly changes of r_{G} for proton, but keeps the high sensitivity to mixed composition
- effect highly zenith-dependent

Maximum of apparent muon production depth $X_{\mu, \max }$

Apparent MPD distribution from muons reaching ground at $r>1000 \mathrm{~m}$

- noisy, complex fitting procedure
- reliable only for larger zenith angle
- results preliminary!

Highly correlated with $\delta X_{\text {max }}$, but slightly steeper

Sensitivity of muon number to modification as a function of $E_{\text {min }}, r$

- sum of absolute values of changes of muon density divided by statistical uncertainty (1000 showers)
- example: proton @ 38 degrees
- large deviations in the most significant point in ($E_{\text {min }}, r$) space overwhelmingly due to low elasticity bins - deep underground measurements highly interesting for particle physics!

