

Antonin MAIRE, for the ALICE collaboration Thursday, 25 Jan. 2024 – **Tuning hadron interaction model for cosmics** 

https://indico.uni-wuppertal.de/event/284

### ALICE bridging towards cosmic ray physics identified-particle production







### A. ALICE $_1$ sub-detectors & data ...

- B. .Selected results ...
- C. Event activity estimators ..
- D. Rivetisation effort ...

Disclaimer :

- I am not a calorimeter experimentalist...
  - $\rightarrow$  I may miss key ingredients in the air shower step
  - $\rightarrow$  will only address potential input for parts of the problem that may relate to MC event generators
- biased towards measurements of production rates :
  - identified particles : (*u*,*d*,*s*) + *c* quark sectors
  - y  $\approx$  0, rather than forward rapidities
  - low  $p_{\rm T}$  : 0.1 <  $p_{\rm T}$  < 2-10 GeV/c

## Part A – ALICE detectors & data

## $I_{-1} - ALICE_1$ : detector layout

ALICE in run 2 = 20 active sub-detectors of various kinds  $\rightarrow$  2 main parts : i) forward y + ii) y  $\approx$  0



## $I.2.a - ALICE_1$ : central barrel, ITS

ALICE-PHO-SKE-2017-002



#### • Inner Tracking System, ITS

| η<sub>ITS</sub> | < 0.9 at least / p<sub>T</sub><sup>threshold</sup> ~ 50 MeV/c 2 layers = silicon pixels, SPD (hybrid pixels : 50 x 425 μm<sup>2</sup>) 2 layers = silicon drift, SDD 2 layers = silicon strips, SSD

→ trigger
 → vertexing, tracking
 → PID (d*E*/d*x*)

(SPD) (SPD, SDD, SSD) (SDD, SSD)

|   |   | 5     |   | / | / |   | 3 | 6 | ) |      |  |
|---|---|-------|---|---|---|---|---|---|---|------|--|
| - | - | <br>- | - | - | - | - | - | - | - | <br> |  |

## $\textbf{I.2.b} - ALICE_1 : central barrel, TPC$

ALICE-PHO-SKE-2017-002



#### • Time Projection Chamber, TPC

 $|\eta_{TPC}| < 0.9$  $p_{T}^{threshold} \sim 150 \text{ MeV}/c$ Ne-CO<sub>2</sub>-N<sub>2</sub> or Ar-CO<sub>2</sub> gas in active volume

#### $\rightarrow$ tracking $\rightarrow$ PID (d*E*/d*x* + relativistic rise d*E*/d*x*)

| - | - | - | - | - | - | - |   |   |   | - | -  | - | - | 1 |
|---|---|---|---|---|---|---|---|---|---|---|----|---|---|---|
|   |   |   |   | ~ |   |   | , |   | - |   | -  |   |   |   |
|   |   |   | 1 | h |   | 1 |   |   | ĸ | ۴ | ۱. |   |   |   |
|   |   |   |   | v | · | 1 |   | • | - | C | '  |   |   |   |
| - | - | - | - | - | - | - | - | - | - | - | -  | - | - | 1 |

## $\textbf{I.2.c} - ALICE_1 : central barrel, TOF$

ALICE-PHO-SKE-2017-002



#### • Time Of Flight, TOF

 $|\eta_{TPC}| < 0.9$  $p_{T}^{threshold} \sim 300 \text{ MeV}/c$ Resistive Plate Chamber

→  $t^{o}$  of the event → pile-up rejection (offline) → PID (ToF)

| • | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 1 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|   |   | 7 |   |   |   |   | 1 | , | h | 1 | - |   |   |   |   |
|   |   |   |   | 1 |   |   | / |   | ŝ | 5 | C | ) |   |   |   |
|   | - | - | - |   | - |   | - |   |   | - | _ |   |   |   |   |

## $\textbf{I.2.d} - \textbf{ALICE}_1 : \text{forward, VZERO}$

ALICE-PHO-SKE-2017-002





#### • VZERO or V0

 $V0C = -3.7 < \eta < -1.7$ V0A = +2.8 <  $\eta$  < +5.1 forward arrays of scintillators

→ event activity : Online trigger (Min Bias + Pb-Pb centrality + high-mult. pp) Offline use (activity in Pb-Pb, p-Pb, pp)

physics vs beam-gas identification

 $\rightarrow$  event charac. :

event plane + ref. flow vector (Pb-Pb)

## **I.**2.e – $ALICE_1$ : forward, muon chambers

ALICE-PHO-SKE-2017-002



#### • µCH and µID

-4.0 < η < -2.5 Muon Chambers = MWPC for tracking Muon ID = RPC for triggering

#### $\rightarrow$ single- or multiple-muon identification

beyond : i) a hadron absorber, μCh ii) an iron wall, μID

|   |   |   | 9 | ) | / | / |   | 3 | 6 | ) |   |   |   |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| - | - | - | - | - | - | - | - | - | - | - | - | - | ŝ |

## $\textbf{I.2.f} - \textbf{ALICE}_1 : \text{forward, ZDC}$

ALICE-PHO-SKE-2017-002

ALICE JInst, doi:10.1088/1748-0221/3/08/S08002



#### • ZERO Degree Calorimeters, ZDC

 $z \approx +7.3 \text{ m} (+4.8 < \eta < +5.7)$ ZEM = Pb+quartz for photons (for distinction between UPC and low peripheral collisions)

 $z \approx \pm 113m$ ZN ( $|\eta| > 8.7$ , full azimuth) = tungsten+quartz for neutrons ZP (7.8 <  $|\eta| < 12.9$  in pp 13 TeV) = brass-quartz for protons

→ used in Pb-Pb, Xe-Xe, p-Pb, Pb-p... but also in some periods of pp 13 TeV 2015, 2017, 2018 (pp  $\approx$  130.10<sup>6</sup> pp evts in total)



## **II.**1 – **ALICE** : ALICE<sub>1</sub> campaigns in LHC runs 1+2



Antonin.MAIRE@cern.ch / Cosmics & MC tuning 2024-01

## Part B – Selected set of results

### **11.**1 – Landscape : particle identif° via detector + via inv.-mass

pp, p-Pb, Pb-p, Xe-Xe, Pb-Pb (<sup>129</sup>Xe<sup>54+</sup>, <sup>208</sup>Pb<sup>82+</sup>)...

- Barrel |η| < 0.9
   <ul>
   → Rapidity coverage ? |y| < 0.5 chosen for mostly any identified particle here in the table</li>
- Forward particles that decay into  $(\mu^{\scriptscriptstyle \pm})$ 
  - some light flavour resonances [ $\omega$ ,  $\phi(1020)$ ]
  - quarkonia  $[J/\psi, \psi(2S), Y(nS)]$

- single  $\mu$  decay from open charm/beauty, HF $\mu$ 







#### **11.** $2 - \text{Landscape} : dN_{ch}/d\eta = f(\eta)$ , over "large" $\eta$ range

ALICE White paper, Fig. 12, arXiv:2211.04384



#### NB: Pb-Pb curve

- $dN_{ch}/d\eta$  (0-5%,  $\eta \in [0.0; 0.25]$ ) = 1929 ± 46
- Integration over  $(p_T, |\eta| < 8.6) : N_{ch} (0-5\%) = 21490 \pm 1460$

(30% extrapolated in the  $|\eta|>5$  tails, without beam remnants)

 $(\rightarrow \text{Numbers from } arXiv:1612.08966)$ 

Antonin.MAIRE@cern.ch / Cosmics & MC tuning 2024-01

## **11.** $3 - Landscape : p_T-integrated overview at mid-rapidity ...$



ALICE White paper, Fig.33 arXiv:2211.04384

### **11.** $3 - Landscape : p_T$ -integrated overview at mid-rapidity ...

 $\int_{p_{\tau}=0}^{\infty} d^2 N / dp_{T} dy = dN / dy \text{ per pp event}$ 

Same picture desired in pp 2.76 TeV, 5.02 TeV, 7 TeV and/or 13 TeV ...

- 1. ALICE data dN/dy are measured and there, still to be plotted
  - dN/dy orders of magnitude will of course change dramatically
  - but the relative abundancies  $\pi$ ,K,p will remain in the same ballpark
    - i.e.  $\pi^{\pm}/N_{ch} \approx 84-85\%$  $K^{\pm}/N_{ch} \approx 12-15\%$  $p^{\pm}/N_{ch} \approx 4-5\%$
- 2. SHM in pp ? "Any expectation ?" :
  - "SHM assumes *chemical* equilibration at hadronic chemical *freeze-out*, in a *(grand-)canonical* ensemble"
  - SHM canonical ensemble is a must
  - SHM will perform less well ( $\chi^2$ /NDF will rise) but will likely catch the orders of magnitude with  $T_{pp} \approx T_{PbPb} \pm 2-4$  MeV

#### **II.** 4 – Landscape : SHMc and Heavy flavours



### **IV.1** – $N_{ch}$ dependence : ratio to $\pi^{\pm}$ , ratio resonance/gnd state .



ALICE White paper, Fig.79, arXiv:2211.04384

### **IV.** $_3 - N_{ch}$ dependence : some comparison to MC generators



### IV.2 – $N_{ch}$ dependence : light nuclei and charm ratios





### **V.1** – Remarks : the upheaval with the $p_T$ dependence

2.

<u>3.</u>



- Where does lay most of the production ?  $\approx \forall \text{ LF species, } 95\% \text{ of } dN/dy \text{ sits at } p_T < 2 \text{ GeV}/c$ 
  - Beware : the order of magnitude of d<sup>2</sup>N/dp<sub>T</sub>dy

the hierarchy among species  $f(p_T)$ 

the reorganisation among  $p_T$  domains for a given species

→ behind the " $\int p_T$  scene", production ratios = f( $p_T$ ) !

e.g. [p > K] and  $[p \approx \pi]$ , at  $p_T \approx 3 \text{ GeV}/c$ 

K/π ≈ asymptotic value at  $p_T$  > 5-6 GeV/*c* Similarly, φ(1020)/K, flatens out ...

```
21 / 36
```

### **V.**2 – **Remarks** : the upheaval with the $p_T$ dependence

arXiv:1910.07678



For  $\phi(1020)/K = f(p_T)$  or  $\phi(1020)/\pi = f(p_T)$ , see Fig.7 in arXiv:1702.00555

22 / 36

## V.3 – Remarks : side-note remarks ...

 (superposition of ≠ collision types) = a fact : Pb-Pb hadronic collision + photoproduction γ-Pb<sup>82+</sup> Seen in excess (factor 7 wrt to pp) of low momentum J/ψ (0 < p<sub>T</sub> < 300 MeV/c)</li>
 from coherent photo-production of vector mesons in γ-A "collisions" → arXiv:1509.08802
 → To be considered also for LF sector ? e.g. ALICE ρ° photoproduction in UPC, at y ≈ 0
 → ρ° : arXiv:2002.10897 2.76 TeV + arXiv:2002.10897 5.02 TeV

•  $\exists [\phi(1020) \rightarrow \mu^+\mu^-]$  measurement at forward rapidities (-4 < y < -2.5)  $\rightarrow arXiv:1506.09206 \text{ p-Pb } 5.02 \text{ TeV}, \text{ pp } 2.76 \text{ TeV}$  $\rightarrow arXiv:1804.08906 \text{ Pb-Pb } 2.76 \text{ TeV} (fwd y + mid y)$ 

•  $\pi^{\circ}$  and  $\eta$  p<sub>T</sub>-spectra |y| < 0.5 in pp, p-Pb, Pb-Pb (" $N_{\mu}$  sensitive to  $\gamma$  flux in the late air shower", right ?  $\exists$  11 ALICE articles on such neutral mesons,

(e.g. arXiv:2104.03116)

 $\rightarrow$  Any tension  $\pi^{\circ}$  Vs  $\pi^{\pm}$ 

(isospin symmetry likely preserved in *direct* production, but may  $\exists$  feed-down difference = f( $p_T$ ) in both *prompt*  $\pi^\circ$  and  $\pi^\pm$  populations)?

- 1. Ratio  $\pi^{\circ}/\pi^{\pm} = f(p_T)$ to be computed from HEPdata...
- 2.1 Ratio  $K^{\pm}/K^{0}s = f(p_{T})$

to be computed from HEPdata...

2.2 Getting in turn a ratio  $K^{\pm}/K^{0}_{L} = f(p_{T})...$ 



## V.4 – Remarks : my parting shot on the cocktail composition ...

The importance of getting the correct cocktail composition of particle species... as function of  $p_{T}$  $\rightarrow$  May play decisive role on the various <u>**feed-down**</u> towards

> $\pi^{\pm}, \pi^{\circ}, K^{\pm}, K^{0}s, K^{0}l$  $(K^{*}(892), \phi(1020), ...)$

Example:



Cocktail composition in real data Vs Pythia8

Antonin.MAIRE@cern.ch / Cosmics & MC tuning 2024-01

10

 $p_{_{\rm T}}$  (GeV/c) 24 / 36

### **VI.** 1 – **Special glimpse** : [mid-rapidity $dN_{ch}/d\eta$ ] Vs [fwd energy]



= ALICE, arXiv:2107.10757 + C. Oppedisano, Kruger2022

## VI.2 – Glimpse : strangeness enhancement Vs forward energy



Strangeness enhancement is <u>anticorrelated</u> with forward  $E_{ZDC}$ , even if one fixes mid-y multiplicity  $\rightarrow$  Early stages (large rapidity gap) matter in strangeness enhancement  $\frac{26/36}{26/36}$ 

*F. Ercolessi, QM 2022 + ICHEP 2022* 

# Part C – Event activity estimators in ALICE

## VII.1 – Event activities : examples

•  $N_{ch}$  in a given  $\eta$  region

- $|\eta|$  < 0.5, 0.8, 1.0, 1.2 with SPD tracklets or clusters
- forward activity with V0A+V0C amplitudes

 $\left(\bullet R_{\rm T} = N_{\rm ch, transverse} / \langle N_{\rm ch, transverse} \rangle_{\rm MB}\right)$ 

Nch in the underlying-event region after *Skands, arXiv:1603.05298* their per-event transverse activity with respect to the mean e.g.

ALICE, arXiv:2310.07490 ALICE, arXiv:1910.14400

• Spherocity = define the unit vector ns that minimise S<sub>0</sub>

 $S_0 \equiv \frac{\pi^2}{4} \min_{\hat{\mathbf{n}}_s} \left( \frac{\sum_i |\vec{p}_{\mathrm{T},i} \times \hat{\mathbf{n}}_s|}{\sum_i p_{\mathrm{T},i}} \right)^2$ ALICE, arXiv:1905.07208 ALICE, arXiv:2310.10236

) not for today...



| MAIRE@cern.ch | Cosmics & MC tuning 2024-0 | 1 |
|---------------|----------------------------|---|

Antonin.

## VII.2 - Method : retain a global event class, "0-100%"

Possible choices :

- Non-Single diffractive collision sample ?
- Inelastic collision sample ?
- INEL>0 = at least 1 charged track in  $|\eta| < 1$ ?



 $\rightarrow$  <u>purpose</u> : minimising the model dependence

Antonin.MAIRE@cern.ch / Cosmics & MC tuning 2024-01

## VII.3 – Method : event activity sampling





1. For events with at least 1 charged particle (typically above p<sub>T</sub> ≈ 50 MeV/c) in |<u>η</u>| < 0.5 = INEL>0 |<sub>|η|<0.5</sub>
→ NB : = <u>corrected</u> quantity (for tracklet AxEff, ∫p<sub>T</sub>, event trigger...) = what defines "100%" of the event sample

 sample the event activity with <u>forward</u> det. : V0 suM

i.e. plain addition

of V0A and V0C *raw* signals

 $\rightarrow$  V0M distrib° further hashed into percentiles

3. For each V0M activity interval,  $\rightarrow$  back to y  $\approx 0$  ! derive the mean,  $\langle dN_{ch}/d\eta \rangle_i$ , of the <u>corrected</u> distrib° of charged tracks in  $|\eta| < 0.5$ 

30 / 36

## VII.4 – Method : V0M-sampled $\langle dN_{ch}/d\eta \rangle |_{|\eta|<0.5}$

pp,  $\sqrt{s} = 7$  TeV ALICE Nature Phys. = arXiv:1606.07424 + PRC arXiv:1807.11321 + dNch/d $\eta$  = f( $\eta$ ) in pp arXiv:2009.09434

*Reference* :  $\langle dN_{ch}/d\eta \rangle_{INEL>0}$  ( $|\eta| < 0.5$ )  $\approx 5.96 \pm 0.23$ 



*Remark* : "What is this crazy binning : 0-0.95%, 0.95-4.7 % ?!" ...

Antonin.MAIRE@cern.ch / Cosmics & MC tuning 2024-01

### VII.5 - Method : (mid-mid) self-correlat° and (mid-fwd) correlat°

#### ALICE, arXiv:1807.11321



### **VII.**<sub>6</sub> – dN/dy : different mult. estimators, tested

arXiv:1908.01861



## **Part D** – Rivetisation efforts

## VIII.1 - Rivetisations in ALICE : <u>HEPdata</u> + Rivet plugins



#### ALICE policy :

- HEPdata archive available internally within the collaboration at the arXiv preprint release
- archive pushed publicly to HEPdata once the paper is accepted by the journal

35 / 36

## VIII.2 - Rivetisations in ALICE : HEPdata + Rivet plugins

#### https://rivet.hepforge.org/rivet-coverage

| Key                         | ALICE                         | ATLAS            | CMS                             | LHCb                          | Forward       |
|-----------------------------|-------------------------------|------------------|---------------------------------|-------------------------------|---------------|
| Rivet<br>wanted<br>(total): | 327                           | 401              | 504                             | 198                           | 16            |
| Rivet<br>REALLY<br>wanted:  | 55                            | 50               | 99                              | 16                            | 0             |
| Rivet<br>provided:          | <b>32</b> /359<br>= <b>9%</b> | 202/603<br>= 33% | <b>114</b> /618<br>= <b>18%</b> | <b>31/229</b><br>= <b>14%</b> | 9/25 =<br>36% |

#### <u>Rivet challenges :</u>

- 1. multiple-run analysis (e.g. pp part + Pb-Pb part, centrality/event activity calibration)
- → core features for that available > Rivet 3.1 ("reentrant finalise")
- **<u>2.</u>** what if post-processing  $\in$  analysis ? (e.g fits often present in analysis)
- 3. large *MinBias* statistics to simulate, large CPU time and/or large disk storage (e.g. Pb-Pb event including hydro)

#### **<u>4.</u>** Rivetisation objective :

- ≠ match MC points to real data ones, not yet...
- (that is the ultimate goal for the MC generator authors...)
- But
- = mimic as close as possible the logic and the ingredients of the real-data analysis, despite everything ...
- $\rightarrow$  A *reliable* rivetisation = [<del>get the physics, right</del>] but [get the MC analysis, alike] !

# The End...

## Part B – Selected set of results

**I.**1 – Part: ...





| c |   |   |   |   |    |   |   |   |   |   |   | - | - | - |   |
|---|---|---|---|---|----|---|---|---|---|---|---|---|---|---|---|
|   |   |   |   |   | _  |   |   | , |   | ~ |   | - |   |   |   |
|   |   |   | 1 | 1 | ٠, | ) |   | / |   | Z | 6 |   |   |   |   |
|   |   |   | - | t | 2  |   | 1 |   |   | ) | Ľ | , |   |   |   |
|   |   |   |   |   |    |   |   |   |   |   |   |   |   |   |   |
| - | - | - | - | - | -  | - | - | - | - | - | - | - | - | - | - |

### .1 – Landscape : resonances and hadronic interactions.

ALICE White paper, Fig.41, arXiv:2211.04384

